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ABSTRACT

The heat checking phenomenon in mechanical seals resulting from

the passage of asperities traversing at a high speed over the surface

of a seal ring is solved with a thermomechanical model of a semi-

infinite medium subjected to frictional heating over a moving contact

zone. The traverse speed is considered to be the same as the rubbing

speed for the current problem. The two-dimensional theory depicts

essentially a single moving line contact with uniform or parabolic

pressure distribution over the narrow width. For the actual asperity,

single or periodic, the contact area is best described by a "spot" that --

may be approximated with a circular or a rectangular geometry. For

such a configuration, a three-dimensional theory is developed. In the

present analysis the general solutions are obtained for arbitrary

distribution of contact loads. Numerical solutions are given for both

uniform and non-uniform pressure distributions. The roles of material

properties and operating variables are expressed in terms of dimension-

less parameters. The double Fourier transform and the Green's function

methods are used throughout the analysis. Numerical schemes for the

corresponding analytic solutions of integral form are developed.

For a constant traversing speed of 15 m/s (600 ips) and a Coulomb

coefficient of 0.5, the two-dimensional theory for a single moving

asperity concludes that the crack could initiate at a normal average

pressure of 482 MPa (70,000 psi) for the case of a parabolic pressure

* - distribution over the narrow width of 1 min (0.04 in.). The three- -

dimensional theory for a single moving asperity with a circular contact
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area of radius 0.25 mm (0.01 in.) yields a critical average pressure of

196 MPa (28,400 psi) at the fracture threshold.

The investigations show that the distribution of the pressure over

the contact zone is more of a deciding factor than the shape of the

contact area. In addition, heat checking from cyclic asperity excita-

tion is worse than that from a single asperity excitation. However,

all results predict a below-the-surface crack initiation. Typically,

for an asperity with the half-width, or radius, of the contact area

equal to 0.5 mm (0.02 in.), the critical location for crack initiation

is 0.05 mm (0.002 in.) below the surface. The result in a sense

justifies the use of linear thermoelastic theory, since at this depth

the material considered remains in an elastic state.

The cumulative effect is demonstrated with a sequence of three

asperities spaced apart by a distance of x'= 12 (12 times the asper-

ity characteristic dimension a). As compared with 196 MPa (28,400 psi)

for a single moving asperity, the critical average pressure becomes 88

MPa (12,700 psi) which is much lower. Consequently, the possibility of

initiating cracks is higher when periodic moving asperities can occur

in the contact zone than when only a single asperity can occur.
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CHAPTER 1

INTRODUCTION AND LITERATURE SURVEY

1.1 Purpose of the Investigation

The investigation uses several mathematical models to study the

possibility of fracture initiation by dry friction and the configura-

tion of fracture. The general study of friction cracking has a special

application in marine seals. The purpose of this study is to extend

our understanding of the problem by looking into the thermomechanical

state of strass in a mechanical part resulting from the traversing of a

single asperity or periodic asperities over its surface. The under-

standing of such a failure process could be used to improve the design

of devices such as marine seals by alleviating the problem of friction

cracking.

1.2 General Background

When to bodies are in high speed sliding contact under heavy

loads, the localized contact area is much smaller than the design slid-

ing surface. The resulting pressure in the area can &-,e higher than the

design pressure by an order of magnitude. Localized hot spots may

occur as a result of excessive frictional heating near the contact sur-

faces. Because of a combination of thermal heating and the mechanical

load, the material may crack in the neighborhood of the contact zone.

This phenomenon is called "heat checking" or "thermocracking". It com-

monly occurs in mechanical seals and brakes as shown in Figures 1.1 and

1.2. In general numerous radial cracks can be observed perpendicular

*. " .-... .-.-... *.....-. *. ,- ,. . .. .- .-. . -.- ..-...-.. -... .- , .- . . .-. ...-. -. .,-..-'. . .. .. **..- .. ..-. ... . - .- .-. . -. . - . ....
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Figure 1.1. Radial hairline cracks on the metallic ring
after running against a carbon ring at a high
peripheral speed.

L.

Figure 1.2. Thermal cracks on the brake shoe.
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to the sliding direction and almost periodically separated along the

circumference. While extensive analysis of thermoelastic effects in

brakes has been studied [1-5]1, the b,." of which Is in the railroad

Industry, much intensive study of the effects Is needed in mechanical

seals. Of concern here will be the face seals located along the pro-

peller shaft in submarines to prevent leakage of sea water throug, the

shaft tunnel. Figure 1.3 Illustrates one assembly of such a device, in

which the seal consists essentially of two annular rings, one of which

is fixed to the shaft tunnel housing, another Is mounted on and rotates

with the shaft. The mating surfaces of the rings therefore are pressed

against each other under spring pressure and rub at a high speed. The

design nominal pressure between the seal rings depends on the type of

vessel and the location of the seal. For Instance, a low pressure of

about 100 kPa (14.5 psi) is sufficient for most surface vessels; for

submarines, the pressure required could Increase by orders of magni-

tude. Had the pressure been evenly distributed according to design,

the service life of the face seals would no longer be a serious problem

even at a high rubbing speed. However, it is well known that the

actual contact area may only be a small fraction of the nominal area at

the design interface. In other words, a low nominal design pressure

may very well result in a very high interfacial pressure, thus a very

high dry frictional force in the actual contact area. The high fric-

tion would cause locally an extremely high temperature, called

lNumbers in brackets denote references.

3
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Rotating Seal Ring

Shaft/

Fixed Seal Ring

Figure 1.3. Mechanical face seal.
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"flash temperature" by Archard [6]. The local contact area is also

called the "red banding" or "hot spot" [7], which has been experimen-

tally demonstrated. In severe cases the temperature can be extremely

high, leading to cracking of the surface [8]. If we use the figure of

10- 3 as area ratio (contact area/nominal area)--Burton [9 considered

10-4 as a possible area ratio--a low design pressure of 240 kPa (35

psi) could result in a 240 MPa (35,000 psi) local pressure in the con-

tact zone, a pressure well within the range of fracture initiation with

unfavorable Coulomb coefficients.

The cause of the localization of the contact area, which is in the

province of thermoelastic instability (TEl), will not be considered;

nor will the metallurgical change in the surface layer. It will

suffice to assume that the localization of contact area is due to some

form of asperities, which may be fixed to any of the mating surfaces or

may precess with respect to both. The present work treats the thermo-

mechanical stress state in the part that mates with the one containing

the asperity and the possibility of heat checking therein. The speci-

fic investigation will consider the asperity or asperities being on the

carbon-graphite, which moves relatively on tie face seal of Stellite

III. The failure due to heat checking is on the face seal which prior

to the onset of failure is assumed to have no other defect on its con-

tacting surface.

1.3 Related Investigation in Progress

The failure records have shown that the performance life of

devices with pressurized moving contact surfaces becomes drastically

. . . . . *... . . . ,*~*~' .-
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reduced whenever the parameters such as the load, sliding speed, or the

temperature field attain certain range of values. There has been

increased emphasis on finding a solution of failure control, experimen-

tally and analytically, of this physical problem in recent years. A

general survey of the problem of cracking through the development of a

frictional hot spot was discussed by Burton [7]. A series of experi-

ments carried out by Sibley and Allen [10] showed photographic evidence

of systematically moving hot patches in the contact zone. Based on the

results in the recent literature [11-15], it can be assumed that TEI

precedes thermocracking and that contact is localized at several hot

patches. Considerable evidence was also shown by Kennedy [16) to sup-

port this crucial assumption. In his experiment, using the carbon ring

against a metallic mating ring made from 440 C stainless steel, beryl-

lium copper or 52100 bearing steel under both dry and liquid lubricated

conditions, the existence of distinct spot asperities on the metallic

ring was observed. It was found that the spots at least in dry opera-

tion tend to remain stationary with respect to the metallic mating ring

of the seal, whether that ring be stationary or rotating. However,

other investigations have shown hot patches moving relative to the mat-

ing ring and stationary on the primary ring [12,13]. In addition,

Burton [14] reported that for an aluminum ring sliding on a glass disk,

the hot spot precessed at a much lower speed than the rubbing speed.

The uncertainty of this observed discrepancy on the speed of the moving

asperities remains, but there is no doubt about the existence of the

moving asperities due to TEI on mechanical face seals through the

effort of all the researchers in this field. Therefore, several

6 -°
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analytical studies of the failure due to the existence of the moving

asperities, which are characterized by high normal and frictional loads

and the resulting thermal heating on the contact surface of the sliding

mechanical parts, have been in progress.

When the thermal effect is neglected, the study is isothermal.

Various analyses of stresses and displacements induced in an elastic

half plane by a concentrated line load moving at a constant speed along

its surface have been developed [17-19). Eason [21) dealt with several

types of moving surface forces and procured the solution of the mechan-

ical stress and displacement field in a semi-infinite solid. Surface

displacement and temperature field of a convective elastic half space

under an arbitrarily distributed fast-moving line heat source were

obtained, using integral transform methods, by Ling and Mow [20). The

problem of thermal stresses [22) and temperature distribution [23] was

examined. A finite element analysis was recently developed by Kennedy

[24] for studying surface temperatures resulting from frictional heat-

ing in sliding systems. He also applied finite element techniques to

study the stresses in the mechanical face seal [25) and showed that the

dominant stresses in the seal components are thermal stresses.

Marscher [26,27) analyzed the thermomechanical stress state in the part

that contains the asperity. A two-dimensional repeated loading phenom-

enon was first studied for stability of contacting surfaces by Burton,

et al. [28,29). The surface stress component (parallel to the surface)

resulting from a periodic row of moving patches, with width 2,t each,

and a spacing of 2m was investigated by Tseng and Burton [302, who

restricted the analysis to the two-dimensional plane stress case. They

7
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concluded from the computed results that the tensile stress would

appear instantaneously with each passage of the heat source.

1.4 Mathematical Model and Analytical Approach

According to the results of the experiment by Kennedy, et al.

[16), the width of the moving asperity was about 0.1 to 1 mm (0.004 to

0.04 in.); while the diameter of a typical marine shaft seal could be

50 cm (19.7 in.) or more. Because of this size difference between the

contact area and the seal, as shown in Figure 1.4, the mathematical

model is represented by a half-space subjected to fast-moving loads of

a constant velocity (V). The loads come from a combination of thermal

and traction contributions. Fast moving refers to the case wherein V

>> /a, where K and a are defined as the thermal diffusivity and the

half width of the asperity. The investigation starts with the study of

a model with a moving line asperity. For such an asperity a two-

dimensional analysis is adequate to develop the thermomechanical solu-

tions. In order to better model the contact area and periodic excita-

tion of asperities in practice, the research adopts eventually a more

realistic three-dimensional analysis. Since it has been observed that

the lubricated film is continually being broken by small patches of

solid-to-solid contact during seal operation [16], we may as well

assume that the working seals are in dry contact representing the worst

operating condition. In addition, for the worst case, the mating seal

that contains the asperity is regarded as an insulator. The analyses

are based on the general theory of a continuum. The relative speed of

contact surfaces is assumed to be large enough to result in a high

8
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Figure 1.4. Geometry of the hot spot moving on the metallic
mating seal.
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Peclet number (Va/K). But it is much smaller than the Rayleigh wave,

which for a steel based seal material is approximately 2800 m/s (11 x

104 ips), and justifies the use of the quasi-static theory. Further-

more, since such loading also results in a low dilatation rate, the

uncoupled thermal stress theory is then applicable. From observations

of failed specimens near the surface, it is reasonable to postulate

that the plastic deformation and rupture at the surface are at the

granular or even the subgranular level. The base solid material sub-

jected to the asperity friction is essentially elastic. Consequently,

the linear theory of thermoelasticity holds. The principal advantage

of using the linear theory is the application of the superposition

principle, enabling a delineation in the stress field to one from the

mechanical load of the moving pressure and friction and another from

the moving heat input, a result of the irrecoverable frictional work.

The combined effects will then determine the possibility of fracture

initiation using the tensile fracture criterion. In two-dimensional

analysis, the Green's function approach is used; while in three-

dimensional analysis, the analytical solutions of the mechanical and

the thermal stress fields are solved by means of double Fourier trans-

form. The temperature field is obtained by both the integral transform

and Green's function methods. Numerical results of the corresponding

integral solutions are represented in graphs. Schematic geometries and

detailed analyses are given in the following chapters.

Two-dimensional and three-dimensional models are examined in

Chapters 2 and 3, respectively. The former demonstrates a simpler

means of formulation; while the latter gives a better description of

10
means..................................................................

. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . .



the physical problem. Both models deal with a single moving asperity.

In Chapter 4, a three-dimensional model of periodic moving asperities

is investigated further. The formulation leads to a general solution

which can be used to justify the results from Chapters 1 and 2.

Detailed discussions and conclusions are given in Chapter 5 and the

related mathematical background is given in the appendices.

1.5 The Uncoupled, Quasi-Static Thermoelastic Theory

The analysis is restricted to the dynamic and coupled theory of an

isotropic linear thermoelastic solid, which can be found in most

thermoelasticity textbooks [31-36J. In vector form, the displacement

formulation in the absence of body forces and the Duhamel heat equation

[37) with no internal heat generation are

uV2 u + ( + ) grad div u- (3 + 2u) grad T = , (1.1)
2

"i (3x. + 2u) =2To _k
kVTPC 1 (3+ 2~ PC T0 Ekk 1(1.2)[1T cTI+ Qc aT .

where To is the temperature of the solid in the unstressed state,

;kk is the dilatation rate and T is the temperature rate. Equations

(1.1) and (1.2) are simplified by deleting the inertia term, pU for the

quasi-static case and of the mechanical coupling term,

(3) + u) 02 To Ckk

for the uncoupled theory. Thus the governing equations for the

uncoupled, quasi-static thermoelastic theory are

11 '"
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UV2u + (, + 1 grad div u- (3x + 2u) a grad T. (1.3)

V2T=_i . (1.4)

A short discussion follows to justify the use of the quasi-static

uncoupled theory. The mechanical coupling term is considered first.

It can be shown that for steel it is approximately

k 2 T pc [ 1 + 1-5  T 0 k]

where T is absolute temperature measured in Rankines. For aluminum, it

becomes

kV2T ocT 1 + 1.8 x 10- 5 T o

If SI units are used, i.e., the temperature is measured in degrees

Kelvin, the coefficients, 10- s for steel and 1.8 x 10-5 for alu-

minum should be replaced by 1.8 x 10- 5 and 3.24 x 10-5 , respective-

ly. It is argued that, for most cases of a high thermal load, kk/

1j should be of the order, 0(l), so that the coupling term is negli-

gible except for conditions in which the temperature distributions have

sharp variations or discontinuities in their time histories, which

often occurs during the propagation of thermoelastic waves in the

aftermath of thermal shocks. The similar argument is also made by

Boley and Weiner [38] who rewrote Equation (1.2) as

12

p 
."%

.:..:.-.



kV T lociC 1 + 8(~l2)ck

where a is defined by

(3 + 211)2 2T
(I + 20i) pC

which has the values 0.029 and 0.014 for aluminum and steel at To =

660"R (corresponding to 367 K), respectively. Further, they showed

that for both cases the coupling is small if

-kk << 20.

3 aT

They therefore concluded that the possibility of omitting the coupling

terms depends not only on the fact that the inequality a << 1 must hold

(as it does for most metals), but also on the fact that strain rates

must be of the same order of magnitude as temperature rates times the

coefficient of thermal expansion.

The dynamic effect can be a result from either a dynamic loading

state or a non-steady thermal state in which the time rate of tempera-

ture change could keep up with the stress waves in the material. It

was stated by Ouhamel (39 that the inertia term can be disregarded if

the time rate of change of temperature is slow enough. Parkus [40]

showed that the significant effect from inertia term can arise only

when there is an instantaneous change in the surface temperature or in

the temperature of the surrounding medium. In fact, the dynamic effect

- is greatly reduced if the temperature change occurs in a very short,

but finite, interval of time. This was confirmed by Danilovskaya

13



[41-42), who studied the dynamic effect due to a thermal shock on the

surface of a half-space in detail and demonstrated that the maximum

dynamic stress is reduced to 86 percent even for the extremely short

duration of heating of 10-12 seconds. In general, under usual condi-

tions of heat exchange, the rate of temperature change is small in corn-

parison with the speed of sound in the material. Thus, at any instant,

the thermal stress state can be determined by the instantaneous values

of the temperature field. Consequently, therz is no need to consider

the inertia force corresponding to the motion of the particles during

the varying thermal expansion, i.e., the inertia term pO in Equation

(1.1) can be omitted.

1.6 The Brittle Fracture Criteria

Metals can be generally divided into two categories: (1) ductile

metals, in which marked plastic deformation commences at a fairly

definite stress and which exhibits considerable ultimate elongation

prior to fracture; and (2) brittle metals, for which plastic deforma-

tion is not clearly evident at fracture. Since the heat checking

phenomenon as evidenced in Stellite III and in ceramic materials [43)

is associated with very little plastic flow, the brittle fracture cri-

terion is ascertained. Based on the hypothesis enunciated by Griffith

[44) in 1921, the weakening of the material is attributed to the growth

of minute cracks resulting from an induced stress field. He [45)

derived the criterion for failure under a biaxial principal stress

field a, and a3 at an arbitrary orientation 0 with respect to the axis

I as seen in Figure 1.5, and studied in detail the variation of the

14 ..
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Figure 1.5. Griffith model of microcrack.
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peripheral stress aC, on the surface of a flat elliptical crack (C

Fo)- He postulated that fracture would result when the maximum periph-

eral stress reaches a characteristic value of the material. His theory

modified by McClintock and Walsh £72], who took into account the fact

that cracks may be expected to close under sufficiently high compres- -,

sive stresses, is stated as follows. As the normal stress On acting

across the face of a pre-existing crack causes the crack to close,

i.e., when

n • [ + 03) + (61 " °3) cos 23] ) 0

or

2+ + + 2+ + O < 0
al~f +f 03E(uf 1 f

then a compressive fracture [72] will occur when

(c 03 01 u2  1/2+ hf]
( + 11 -f I

where ac is the uniaxial compressive strength of the material, Of is

the surface coefficient of friction and 9, which is equal to 0.5

tan- 1 (i/,f) and measured from the minor principal stress 03 axis, is

the orientation of the crack at which fracture initiation will corn-

met-- If f* 0, w / 14; if f af e 0. Thus the direction

of fracture is always inclined at an acute angle to the direction of

the axis of the largest principal compressive stress.

When an causes the crack to open, i.e., as > 0, tension crack-

ing occurs. For the case that

16



-3 u -a3-<a

fracture initiation occurs when a, qu where au is the uniaxial

tensile strength of the material. For this condition of tensile fail-

ure, the crack begins to extend in its own plane in a direction perpen-

dicular to that of the major principal stress a,. While for the case

that

(3 < -3 au

failure takes place if

2(a *3 ) + 8 au(aZ 1 a 3 )  0

and the crack runs towards the 03 axis as in compressive fracture. The

corresponding fracture locus, as shown in Figure 1.6, is well illus-.

trated by McClintock [46). He also extended the criterion to the

three-dimensional case (see Figure 1.7).

Concerning the crack propagation direction under uniaxial compres- -

sion of plates of brittle materials, both analytical and experimental

results from Nemat-Nasser, et al. [73) provide good correlation with

the Griffith's theory. It was shown that, for the wide range of pre-

existing crack orientation, the out-of-plane crack extension initiates

at an angle close to 720 from the direction of the pre-existing crack,

and then curves into a position almost parallel to the maximum axial

compressive stress as shown in Figure 1.8.

Within the framework of the linear elastic fracture mechanics

(LEFR), three modes of cracking as in Figure 1.9 are often referred.

17
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All Cracks Normal to a3
.i - ~~Unstressed Plane a '"::

8a -'3a
U

I Random CrackI Orientation

Figure 1.6. Brittle fracture under biaxial stress.

-a3

"au au a

2:" "Cu a 8a:.:

Figure 1.7. Brittle fracture solid representing the states of

triaxial stress for brittle fracture.
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(a) (b)

Figure 1. 8. (a) Specimen with a number of randomly oriented
cracks, and (b) the failure pattern under overall
axial compression.
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Of concern here is the Mode I crack since it is often observed on the

failed seal [11. Consider a through- the- thickness microcrack of

length 2a in an infinite plate which is subjected to the unlaxial

ultimate tensile stress as shown in Figure 1.10. The maximum stress

occurs near the crack tip at e 0 and has the value of age

auva 7Mr. Under this condition, the instability of the milcrocrack

results in the fracture initiation predicted by Griffith's theory.

20



Opening Sliding Tearing
Mode Mode Mode

Figure 1.9. The three modes of cracking.
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y
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2ae

Figure 1.10. Crack in an infinite plate.
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CHAPTER 2

A TWO-DIMENSIONAL MODEL OF A SINGLE MOVING ASPERITY

2.1 Mathematical Model2

In the present model, it is reiterated that the line asperity is

on the insulated mating part of the cracked seal and the speed of the

effective load is subsonic. The geometry of the contact area, as shown

in Figure 2.1 is such a long narrow strip that the width of the area in

the direction of motion is of small order to the radius of the seal

surface. Accordingly, the latter may be represented by a planar half-

space. The problem may then be described by a plane thermoelastic

model as shown in Figure 2.2. The contact load is represented therein

by a symmetrically distributed pressure over the contact zone. Coulomb

friction is present, resisting the relative motion of the contacting

surfaces, that is, the friction force is in the traverse direction of

the load. Two sets of coordinates are employed: (x - x) are fixed to

the seal; (xI - x3) are fixed to the moving load. The boundary values

of this problem are therefore as follows: on the surface boundary x3 =

0, there is a combined normal pressure p(xj) and tangential friction

ufp(xl) distributed over the contact zone (-a < xi < a) and the

half-plane is traction-free elsewhere. For the regions at infinity,

regularity conditions hold.

The thermal load on the half-plane comes from the frictional heat-

ing in the contact zone. The mating surface is by postulation adia-

batic. Therefore, all the dissipative energy is accounted for by the

2The present chapter is a revision of [71.]
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Figure 2.1. Two-dimensional asperity.
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/ f p

-0.25 nun (-0.01 in.) 0.25 -m (0.01 in.)
-a a

STELLITE III

x 3

Figure 2.2. Plane model of the half-space problem for a plane
moving load (PI and P2 denote the uniform and
parabolic pressure distributions, respectively).
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heat input to the seal. The heat loss across the free boundary is also

neglected.

The material properties affecting the thermomechanical stress

field will be the elastic coefficients (E,v), the density of the seal

(p), the coefficient of friction (hf), the coefficient of thermal

expansion (c), the thermal conductivity (k) and the thermal diffusivity

(). The parameters characterizing the loading are the pressure dis-

tribution p(xj) over the contact zone and the velocity of the moving

load (V) for the case when the traversing speed is the same as the

rubbing speed.

The stress field from the mechanical loads of normal pressure and

friction will at first be computed. The thermal load from the friction

force will then be considered to compute the temperature rise and thus

the resulting thermal stress field. The two sets of stresses should

provide an insight to the separate effects on stresses from the mechan-

ical and the thermal loads. The combined effect from superposing the

two shall provide the information on impending failure by fracture.

2.2 Mechanical Stress Field

The solutions of the stress fields, corresponding to the mechan-

ical loads as shown in Figure 2.2, may be obtained by the method of

impulse response. For that method the stress field {sai} from a

moving normal force of one unit (Figure 2.3) is the impulse response

for the normal pressure while 1 ,8i'j from a moving tangential force of

one unit (Figure 2.4) is the impulse response for the friction. For

25
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Figure 2.3. Unit normal load on a two-dimensional half-plane.
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loads with subsonic speed, the solutions follow Eringen and Suhubi

[19J:

ni

Sal I-i e~ ~ sinn
'iTrFd d Sifls

2 2
2s(2si +1 2 8 1 +S c4s 0 21

n1 1 r s OSd s 5 s

and

f.L -2s~ (2 +1) 2s U1+ 82
n d1 Rd -s ~ d dS-

, z c1 2 2(+8Cs)(.1

f ~1) 2s (0dOs + ) 20s +S
Sol 73iR ~ r d d o Co d+ rs Cs

2 2220 ( + 0 (1+8)+f1+s s sn

5f 1 4dos si 8 rs sine (2.2)

where

21 M2

e1tan ~
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2 2 B~
R2 (+2) d $s

B - 1 + 0 122 - 82 + 1)

s d s

VpMi =i' 0 < MI < i 1

r i = (x) 2 + (80 3) , d,s

and Cd and Cs are respectively the dilatational and the shear wave

speeds.

The actual stress field due to the normal pressure is obtained by

superposition as the Faltung product of the impulse response with the

pressure distribution function p(x1 ), i.e.,
L-,

n nl jj . p(x 1) . (2.3)

Similarly, the stress field due to the friction force is the Faltung

product of its impulse response with the friction distribution func-

tion:

f f (2.4)
*aj= i 1JfP(x 1) • 24

We shall use dimensionless variables such that

11 oa33 '713

and

xi x3

, .p0  a

28
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where x is a dummy variable of E, and po is the average pressure in

the contact zone. The stress fields resulting from the normal pressure

and the friction force in the contact zone are respectively obtained

from Equations (2.3) and (2.4) as follows:

n = dC~ B _____

R _RJ 2 +A2 ) --- 2 (
- Ad s

= 2 2d
n Ad 1 (1 + s) 4 2s

a = 2Bd(1 + 22 -. 1'(,)( - )
-R 2 2 2 dx

(2.5)and

S2+1 (1 + B2 1 2)

n 2df s _ d (2W Q X) >.

f plfx(l B )( ; - 2) 22 BJ2l 'x( 2 x)

irR [(x -) 2 +A2][({ x) 2  2 dx

f= J '() 422 d(1 (2.6)

2 2)+A 2-

where Ai -
8i¢ , = d,s.::'-

29(2.5

a f POX. . . . . . .d. .. s s-.:
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When the pressure distribution function () is given, the convo-

lution integral can be evaluated. The simplest case Is when the pres- --

sure distribution is uniform, p = 1, for which Equations (2.5) and

(2.6) become

n 1

CC rR s T' d S is

2

U ( + F3s)

n 8d(l + 82) Fd
ln(Fss),

f fs 2 2 + 1) In F (1 + In F s]

f "U"f8s(1R + j~) I d

f - -(1+ 2s2 (2.7)
aC w B~~ +S) *s]

where

= tan-( 1 ) + tan- 1 (  -

;. 1 ) 2 + A2

2 772 1 + 112 + A 1 .i

The second case for which a parabolic pressure distribution, p'= 3/2(1

- 2,is considered yields

30
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B (A + 1) d- 4Sd~s(As + 1)

2
- Ad[B( 2 + t In Fd) - 40 (2 + c In F)]

n 3 + 22 ( oe(2 2 1
MR0; .f-(+ s) (A d +1) d + 8  s'- 1 's

2 2 2- Ad[-(l +. Bs) (2 + in Fd) + 1s(2 + in Fs)},

2
3o (1 + B)n d = [(A2 + 1) In Fd 2(A- + 1) In F'

+ 4C(Ad*d - As*s ) ]

f 3.s [-(28d os + 1)(Ad- + 1) In Fd :

2 2 2 2 2
+ (1 + (A - + 1) In F- 41E(2a - + 1) A.--

C 2 2 2L s A A - 2(s - Bs ,)-

21T

f 3 ufos(l + c 1) ) In Fe2 (A2 2 -I n F

ZrR d d  (A s  -

+ 4C(Ad e d - AS*S))

f 2 2 2.2 2 2
I. d _ds(A +1) d + (1 + S ) (A5-2 + 1) *s

-A[4 (2 + c In F 22 (2+ E In F (2.8)
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2.3 Temperature Field

The heating on the boundary is assumed to be caused principally by

the friction. The analysis is therefore one with a half-space sub-

jected to a fast-moving heat source. When the mating surface and its

asperity are assumed to be adiabatic, the rate of energy dissipation

fromi the friction force is converted entirely into the heat input q

such that

I

q YIufp(xl)

Using the solution developed by Ling and Mow [201, we may obtain the

temperature field as

(p expJ.. 4(e -X ,~1 <

a2

1 e

(2.9)

where

il is the dimensionless temperature,

from ) =.2~.is the dimensionless heat input,

such t a the Peceqoq

- is th eltnumber,
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T is the temperature above the stress-free ambient temperature and qo

is the characteristic heat input (ufVPo). Q(x) is therefore identified

with . • .

Surface temperatures for the case of uniform and parabolic pres-

sure distributions can be readily obtained by letting C = 0. The

results can be expressed as

:: s( ) -0 , -< < -1 ,"°

= 2( E + 1/2 1/ 1<
s TP e

(2.10)

and

, 0 , -- < 1 ,

(s 3  ((1 . 2 + 1)1/2 + 2 ( + 1)3/2
(wPe)l/ 

'.'

1 5/2-(+ 1) }< _--

3- 2 /2 1/2 312

la1 E(e+ 1) (C" 1) -+ E 1)3-

0 ... 13 2]  ( 1 )5/2  ( 1) 5/2], 1 < E <- ...:"

(2.11)

respectively.
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2.4 Thermal Stress Field

The impulse response of a stress field corresponding to the heat

input of a unit pressure is {a}, which is conveniently separated into

the particular and the complementary solutions {8aP} and { 5 c},

respectively. Their expressions, following Mow and Cheng [22 33, are

2 ( 1/2 -3/2 P c 5/PCsop 3 + C exp -'L.)H(H(

P (P )Z( e~ - /

e e

,= . _ - 3 / 2 P . 2 H ) P e( 2 .1 2
I 2P l e zl 4  - i 2 e 8

c c (. 
2 

1/2 (Ve

-~ ~ / si e~ ) 3 3 j+ c2)H~

P¢ (-3el/ c exp " - ( )(2.12) .

c 1 2 2 -3/4 3 3 3 5

-{C ( + [cos e sin e + c os a (cos .

- sin .e) + C3 C3( 2 + C2 ) 2 } H( )

r 1 ((&2 + C2 8-1 3 3 3 )J

(: . o € Cos e -sin 7 + 7 Cos 0 (Cos ..

sin, - + C3"(+ C H(C)

3The equations listed are a corrected version of those given in the
paper.
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where

0 tan ,

e

C 2 g
C 8

3J

e

g * E ~!.Va,

and

l 1 0 <

The thermal stresses are thus computed from the Fal tung product:

lj Sa8 ij QWx

K- where Saij is the combination of the particular and the complementary

solutions. The results can be expressed in terms of convolution inte-

grals, which are

aij a]1 S(x) 6 (E -X~) dX - < < 1
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1j =J4) dj 1 < C < (2.14)

in which
470-. + ec. (2.15)

Note that the expressions for &j and o~ij correspond to those in

Equations (2.12) and (2.13), respectively, with the deletion of the

Heavi side function.

With the notation

Sn =f (e - ,)-n/2 exp - - dx-

and making the change of variable,

P2eg

1;=4(e - x) -

we have

1 P1/2  + 11/2 e 1/2 1/2-

S 2 )1/2 1 erf xj(P T

e ( '{ + 1 'i-.

2 "

8 /2 4T=&+ 1/2
S -  e dt. (2.16)

Equation (2.14) for the uniform pressure loading case, on the sub-

stitution of Equations (2.15) and (2.16), gives
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Sa - 0, for -< _-1 ,

a "-pe(wPe)l/ 2(lPe)l/ s5 +,f - x) dx, ?:
22

e 2e( - x,¢) dC

a - S S +f 1 - x,+) dX

a (Pe1/2 13 +1/2- ..5

for -1 _. ' _ I and

S- 2 .2 T 1 ----- T3 + g¢2 T5  1 ( L¢)d -2.

2C 1

= P P /e ( ( .C) d,-

S+f Q c ',

= - g T3  _1 ( - xc) dx (2.17)

for 1 < -, where

Tn (J - exp/2-e - 1) d, =

Similarly, the stresses for the case of the parabolic pressure ',

distribution can be obtained as follows:
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ii:

For < < -1,

For -1 < C <1,

. 3g F - 3 2 F3 + 1 2 F 5
S e 2P 4(Pe 2

e e

3g1 (F -g F2 +~ 3~ X2)) dAC

=/2 + (1  -721 .
a 2Pe(l7Pe) 4(wPe)

a 3--1- 2) 6 1 -3,1) dx (2.18CC; 1(1p~ l2 F 3 X2) 1 "--

2(iP)

where

• For 1 < < = '

: _ 3q 3q 3g¢ :
: ° (P~l2GI 1 G3 +  G5:!-

•~ ~ ~ T 2Pe (TPe  41 Pe)1 "'

~~+' 3f 1 - 2 )  1( - ,C) di -.

1/2 3 12 5~ 2 CC:

i: = ~ ~3 G3G fl (1z 2P) e~/ (i ,) dx . ,€ ~

17- G 
2.8

=C 1 2g 3  + 2 (1 -C ) C ,€ d.(.8

w here ::-
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1  1/z 2 (1)1/2 [2( 2 2 p 2 1 p2 4

7 e[ pe] e M e 2 expI

ee
.-p 1

- ~ P'(~+1)/ +x~ 8 12[1-ef ( )/]

p -[14 _C + c PeC

1/2 [ [_]

4 +  P( + 1) ep 4-+"

39 1..1 Pe ) e
-e +  1 exp[ 41 l11 1 -erf 11

• i - 2 .. e 2 2 1e2;4 , '-

F5 2 1. ~l/ ( + ( 1 / + 1 2 e -tP3 (PeT3 I/ lC ej oe
Pi/2 ( +1 ) 3/ x PC2 + 2[ erf (p_ T 2 "e''1/2

c Pe cc e

F5 8" t2) ;3g ep 41r + 1 t1 / e- ' d"t
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and

Gn  ] 1- - exp - dX, n = 1,3,5

2.5 Numerical Results

The numerical evaluation of the mechanical stress fields in Equa-

tions (2.7) and (2.8) can be readily obtained by direct substitution of

W
the data for loading and material properties. Figure 2.5 shows a

n + f for different depths C. The traversing speed V = 15 m/s (600

ips). The solid lines represent the uniform pressure distribution and

the dotted lines represent the parabolic distribution. Because of the

load discontinuity, the stress component a has two singularities on

the surface, for the case of uniform pressure, at C = t1. In the real

problem, the pressure distribution is closer to the case of a parabolic

function, for which there is no singularity.

The temperature field for both cases is shown in Figure 2.6. Near

the surface, there exists a high-temperature thermal layer. The tem-

perature decays exponentially with respect to the depth as we can

observe from Equations (2.9) and (2.10). As a result, the thermal

stresses under the moving load may be compressive near the surface and

become tensile at a certain depth where the maximum temperature gra-

dient occurs. Indeed, this is the case and illustrated by the numeri-

cal evaluation of the thermal stress fields in Equations (2.17) and

(2.18), and shown in Figure 2.7.

The maximum principal stress resulting from the combined stress

field is shown in Figure 2.8 for depths C = 1.0 and 0.1. The
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compressive state of the thermal stress in the surface layer (Figure

2.7) is at a much higher level than that from the mechanical loading

(Figure 2.5). However, the combined stress field does become tensile

at a small depth and reaches the maximun principal stress at approxi-

mately a depth of one-twentieth of the asperity size. According to

Figure 2.8, a tensile crack will not o,..cur because (aI)max/Po = 0.82

is less than one. However, the temperature and the combined stress

field strongly depend on the asperity size and the other parameters

mentioned before. The details on the study of parameter effects will

be gi,.en in Chapter 5. For the purpose of illustration, the maximum

principal stress field for a typical asperity size of 1 mm (0.04 in.)

is also obtained. These results are compared with the results obtained

with an asperity size of 0.5 mm (0.02 in.) in Figure 2.9. At a pres-

sure of 482 MPa (70,000 psi), the maximum principal stress reaches the

ultimate tensile strength. The distributive friction force of 241 MPa

(35,000 psi), using a coefficient of friction pf = 0.5, is well below

the ultimate shearing strength. Therefore, the crack could initiate at

a depth of 0.05 mm (0.002 in.) from the surface for a typical asperity

size of 1 1 mm (0.04 in.).
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CHAPTER 3

A THREE-DIMENSIONAL MODEL OF A SINGLE MOVING ASPERITY

3.1 Mathematical Model

In order to model a hot spot with a contact area that represents

better the actual case and to investigate the three-dimensional effect,

the three-dimensional problem of a single asperity moving with uniform

velocity over the surface of a half space is presented in this chap-

ter. The results can be used to compare with the two-dimensional

results obtained previously. This half space representation of the

seal is based on the same reasoning concerning the relative size

between the seal material and the moving asperity as used in the two-

dimensional analysis. The asperity contacts with the material on the

otherwise traction-free surface in a small rectangular or circular

region. The coordinates xi j} are fixed to the moving asperity such

that x, points toward the trailing direction of the motion, x2 is per-

pendicular to the traversing direction, and x 3 is a depth measure

pointing from the surface into the material, Figure 3.1. For the

rectangular contact area, the aspect ratio, t = b/a, is a significant

parameter for the three-dimensional effect. For large aspect ratio,

the asperity excitation is effectively a moving line load that was

presented as a two-dimensional plane strain solution in Chapter 2.

In the three-dimensional formulation the potential theory approach

in Chapter 2 is no longer applicable. Hence, the Fourier transform

method (Appendix I) is used throughout in analyzing the mechanical and

the thermal stress fields as well as the temperature field. The latter

.. .~-. .. -;- *ij :.~j : ~-:9 '-v ':iL:, :



V (I) Rectangular Contact
Area

2a

V (II) Circular Contact
Area

Figure 3.1. Moving asperities.
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is also analytically checked with the Green's function approach.

Because of the complexity, the general solutions given in Sections 2,

3, and 4 for the mechanical, the temperature, and the thermal stress

fields respectively are left in the transformed space. The numerical

solutions in Section 5 apply specifically to three cases: a moving

rectangular contact area with uniform pressure (Case 1), a moving disk

with uniform (Case 2), or nonuniform (Case 3) pressure. In the inverse

Fourier transform the multiple integrals for the mechanical stress

field are reduced to single finite integrals which are more suitable

for numerical computation. However, the temperature and the thermal

stress fields are quite complex and remain in the form of multiple

integrals, for which numerical evaluations are obtained using a Simpson

adaptive scheme in conjunction with a Gaussian-type quadrature (Appen-

dix II). This numerical scheme is proven to be effective since it

checks with the numerical result for the temperature field obtained

from the Green's function method from which the resultant integrals are

much easier to evaluate numerically.

3.2 Mechanical Stress Field

Basic Governing Equations. The governing equations come from Cauchy's

law and Hooke's law. In terms of the moving convective coordinates

{xi} and with the absence of body forces, the acceleration in

Cauchy's law will have only convective terms. They are:

a. -.
J 2  ll(3.1)

4Summation convention is used for repeated indices of roman minuscules.
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M

47j = XakUkd1j + U(aiuj + a u1 ) i i,j,k 1,2,3 (3.2)

IJ
where ui is the displacement field, ai is the mechanical stress field,

a denotes partial derivative with respect to xi, aij is the Kronecker

delta, V is the asperity traverse speed and p, x, and u are material

constants. The method used to solve the equations above is similar to

the one used by Eason [21].

Equations (3.1) and (3.2) are conveniently solved by the method of

double Fourier transform with respect to (x1 , x2 )

7(71,'2,x 3) W . f(x1 ,X2 ,X3) e11x2x2) dx1 dx2 . (3.3)

With the use of the relation

a f- H-iri" T, r- 1,2,

Equations (3.1) and (3.2) become

i ir'jr '+ D Oj3 = -V 2  
, j = 1,2,3 ; r = 1,2 , (3.4)

and

Srs Xk uk Irs ""J(*rs +7sad 3 )D

- = - ---- + UD krs = 1,2
a3r rU3 r

33 = -ikxku k + (, + 2u) DU3  (3.5)
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subject to the boundary conditions

R at x 0 (3.6)

and

u 0 as x3  , (3.7)

where the transformed quantities are denoted by a superposed (). Ri

is the traction on the surface x3 - 0, 0 denotes derivative with

respect to x3 and the index i 1,2,3.

Displacement and Stress Fields. The solution of the set of ordinary

differential equations (3.4) and (3.5) is obtained by combining

Equations (3.4) and (3.S) with the result

2D ( 2  2  -2 -2 (2 622

--1 2 (s 1u u + ED 2M - (8 -1) 0 =0 ,

22 2 1 2  -x2  -2

6 ~1 (0 2 1) DU~ 1 i'Z2(B2  1) Ou + [a D2 + (M~ 2 1) = 2 0

(3.8)

in which

S= V(1 -) 1/2 2 =(X+21)/2. 2

Equation (3.8) is a system of three simultaneous homogeneous linear

51 I-"
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equations for three unknowns fI-i}. For nontrivial solutions the

determinant of coefficients should be zero identically, that is

.-.

2 D2 -n) (D2 -n2 =0

1 2

where the distorted distances are m. -

n= ( r 1,2

Hence, Equation (3.8) results in

2 2 D2  2 n 2

(D 2 -1 (2 '1' U2 , U3) =0 (3.9)

whose solutions, with the consideration of the regularity condition

(3.7), are

-n1x3  -n2x3
u 1 = Ae + (B1 

+ C1x 3) e

-nlx -n2x3
"u2 A2 e + (B + C2 x3 ) e

-n~x
"U3 =A3 e + (B3 + C-"x3) e2x3 (3.10)

where the coefficients {A1, Bi, Ci,} are independent of x3.
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Substituting Equations (3.10) into (3.8) gives certain relations

between these quantities as follows:

VG Ar  nx~r A3  r =1,2,
17

S 8 + x282

3  n

and c. - o , j = 1,2,3 .. .

A3 , B1 , and B2 are to be determined by the surface traction condi-

tions. Thus, Equation (3.10) can be rewritten as

exA nx + B enx
1 n1 1

i62A3  -n1x3  -nx 2X3
U e + B e
2 n1

-ni x. -nx
iAe 1 311 +282) e 3 (3.11)3 •  3e " 2 1 1 '2

2I

Expressions for the transformed stress components may be obtained

by the substitution of Equations (3.11) into (3.5). In particular

XM2l-2 2un -n x3  -n x3 .-'°-33 n A 3 e + 12u(71'1 + x2'2)• e-:-

2-n x3 -n xn 

xB

2

1  2 + -n 2x3a3 " "ijx 2 3 e - n [(n + ( 2) 822] e . (3.12)
2

53



In view of the boundary condition (3.6), A3 and 81, 82 can be

readily solved and expressed in terms of "fi.

-2 -2 1 M 2 2W
2UFA3  n[Ux+ I- _ 2x1 3 + .n2(. . .

M2Ul) x +  "X2T1 "X''

2jFB1 = -iGjnjn 273 + L + - - 2nn2)2 n + 2-(2

-M-i)JR1 x1 x2(x + x - 21 2n1 n2) T2} 1

2uFB.72 -ff~nn~ 1 2-~2 ~~ -2 -

- .X Mi 2n n 2 W

1 - 2-2I

1(-x2 2 2 -2 -212-
1 1' 2 2 2x1  2njn2)+ n (x- .X1 2}x,

(3.13)

Following the substitution of Equations (3.13) into (3.11)

Z2 ~-n1x3
2 1U = (i'Z'n 3f3 - I n2R1 1 " 2n272) e I nIn273

x (n3 - nn 2 ) n + n n + (n3" 2nln 2) 
e'n2x3Ln2 3 1 ] T )i

1n2-2 1 3"

2in 3f'3  'n 2"" en112 - i2nI n "
2~~~ ~ ~ 21 32 l 2f223

X1X2 (n 2n n) -x12 n +nniT2Ie 2nx3nL n 3 2-..,-
"2 2
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-nl
2u 3= (nln 3lT3 + t 1rnln2]1 + l 2nln 21T2) e•1X

- --2+ -2 3 + Gijn 3fI + i72n312] e (3.14)

where

-2 -2 1 2-2 2 -2 -2
nl3  xI+ 2 'I2 x1, F n 3  n 1n2(x 1 + x2)

Stress components can then be determined by the substitution of (3.14)

into (3.5) in accordance with the new variables as follows:

N n3 - 2nln 2 ; N2  N1/n2  - ,, n3R3 + in 2('Z1  "2 R2 )

Thus we have

-n x

-Mi -2 - 2-

+- I LX n + + 2]•
"  e 23 x+22 1

1 2 B 1 22 + n2n3 7 -

41- 2 2-2- -nnx 2 -

2xF -22 = " [(x + 3 - n1) x,+ 21] e - 21{x2nin2Rx 7,

-nn x
2UF -33 [ Thi2 -2 2 -2 1~ e~i3 2nnR

+2 2uCI7 + n 1 3 + 2n 3(i12 e 2 UI2) 1
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"M nlx3  2U'::y11

2uF -412 1 X2 e  . 22UxjxnxnzB3 e ' X2 2Y2[nn3
.-- JR 1 1 f~l 3  ( 1 x)-n 2x3  . :

- 2 -2 7 + i r [ -2 -2 N] 2  3i-:x " X2 ) N2]1 1R ~2n3 +  x- X2) N2] T}e"-'

2UF = -2Ui 2 n1T efnlx3 + ji{ 2n (' + X'+ n) I

23 1 2 2 3

-[ 2nn2 - 2 + 2) 2 e"n 2x 3

--n x
2U.F = 2i'llf e +Piii~i + 2~ +2 73

32 2 7X 2'2 efl (3.15)

The general solutions of displacement and stress fields are left in the

Fourier transformed expressions (3.14) and (3.15). The actual fields

are to be obtained through an inverse transform after the substitution

of the specific boundary values {1I}.

3.3 Temperature Field

The heat equation with constant thermal properties, assuming

quasi-steady state and no heat generation in the medium, as expressed

in terms of the convective coordinates {xi}, Is

a11 T = a a1T (3.16)

where Is the thermal diffusivity.
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The boundary conditions at x3 = 0, are

q( x2 ) , in the contact region

ka3 T = (3.17)

0 el sewhere

T, a iT + 0 as (xixi) - . (3.18)

Note that T is the temperature above the stress-free ambient, k is

the thermal conductivity, q is the heat flux (-RIV = ufpV), where Uf is

Coulomb coefficient and p is normal pressure distribution on the sur-

face x3 = 0. It is assumed that the mating seal which contains the

asperity is an insulator.

The double Fourier transform of Equations (3.16) through (3.18)

become, respectively,

2 2[D -(s +in)]T=0, (3.19) -:

-i(i, 72 ) , in the contact region

kDT = = (3.20)

(0 , elsewhere

T o as x3  , (3.21)

where s2 = x- + X and n = -(V/,) 7 Now let T + iT2 and Q/k =
RL1 x2ann-V,) 1  No e 1  2

7 if then Equations (3.19) and (3.20) result in

(02 - s2) T1 =-n 2 ,:-.•o

2 _
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(D 2 - s2  T2  nT1  (3.*22)

and

DT1 =

DT 2  P2  at x 3  0 .(3.23)

Also, (3.21) becomes

TillT 2 .0 as x 3 (3.24)

Equation (3.22) can be expressed as a fourth-order homogeneous

ordinary differential equation which is

ED- 2sD+ 2 s)T =0 r= 1,2. (3.25)
r

In view of the regularity condition (3.24), the solution of Equation

(3.25) has the form

Tr ze_ 3 [Ar cos(e x3) + 8 r sin(ex 3)] (3.26)

where

(s4 + n2)1/2  .S 2]1/2

(4 2)1/2 2] 1/2

( n) + S
2J

Substituting (3.26) into (3.22) and (3.23) gives

_=wA 98Br r 1,2 (3.27)

and
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A1 = eB 2  (3.28)
1 Me 2

B= A (3.29)

Hence, we have four equations for four unknowns A,, A2 , B1 and B2 ,

which can be readily solved.

2w +

nP- 2w121 2A 2  a , .-

2, 2 2-

2w(w + )

1 2

B = 1 + 28 (3.30)
2 2(0 2820(w 2 + e29 :

Following the substitution of the expression (3.30) into (3.26) and

according to T =T + iT2, we obtain T as

= • {EC I cos(ex3  + C2 sin(ex3)]

+ Cc3 cos(ex3) + C4 sin(ex3)] P2 } , (3.31)

where
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• .

C =2w + in

292 + in :::

2 28 2+ In

-n - 12w2

c3 =2(z + 2i'"

-n +1,29 2
%= 2 z +8)1

C4 2
2c = -n + 12

Again, the temperature field is left in the Fourier transformed expres-

sion, which will be used in solving the thermal stress field. To be

complete and also for comparison, the Green's function solution

approach for the temperature field is given in the following.

The Green's function solution, following Carslaw and Jaeger [471,

can be expressed as

g(X - xjx - x, x3, t - t) = 4_c[(__-t_)] /2 
_

1 .2 3o4CW-t-t)

exp !- t(x1  xj) - V(t - t)] 2 + (X2 - X )2 + (3.32): •exp( , - I +'x (3.32) .

which is the temperature at time t at the location (xI, x2, x3) due to

the unit heat flux input.emitted at time t' at the location (x , x2,

0). It can be easily shown that Equation (3.32) satisfies the

governing heat equation (3.16).

The temperature field can be obtained by the convolution integral

as
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T(xX 2,x 3 t) :J q(xj,xj) Ko(x 1 - xj, x x, x3 , t - t') dxj dx-
BH

(3.33)

where BH indicates the heat-flux input region and

t

K° f g(x1  " x , x2 - x , x3, t- t') dt' . (3.34)

After substituting (3.32) into (3.34) and changing the variable by

letting T = R/2/,c(t - t', Ko becomes

e° e l 1 /2 TR 2(V2R2 /16sc2 T21,-

= e" 1 dr (3.35)T31  kR 1R2/,c

where p .density

c specific heat

k pC .

R C(x1 - xj)2 + (x2 - x1 2 + x3

For the steady-state solution, i.e., t +, Equation (3.35)

results In

G(x1  X!, 2 - X 3) = linm Ko
t4

-VCR - (x1 - x)(1323;: = - e (3.36)
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Accordingly, the steady-state temperature field can be obtained as

TVCxxx) 1 ___I____ /2__c

1'T (xj,x q ) X dxI dxj (3.37)

which will be employed to give numerical results for different cases of

appl ication.

3.4 Thermal Stress Field

The governing equations for the thermal stress solutions are based

on the theory of quasi-static uncoupled thermoelasticity. The

governing equations are then

172 u+ (x + a (a = (3x + 2U)4 (3.38)

and

T
47ij X3 u3kk6 + U(3 u1 + a u) Ox3~ 2uz) JT6 (3.39)

subject to the boundary conditions

=0 i=1,2,3 at x (3.40)
131 x3  0

T1/
u 0as (x x.)1  + (3.41)

The double Fourier transform of Equations (3.38) through (3.41) are

26
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* Y•lV 97. 17 W.. ,7 .• .

- U,2i 1  - ia7 2D 2 + (a 02 - s2) V3  a a30T (3.44)

-T
al" -fla.xu.---- + a4x2 2) + a4Di3 - 33 , (3.45)

-T
'22 -i(a47J + ai 2 2 ) + a4D~ - a3T ,(3.46)

-T
"3 __ -ia 4(7jUl + 72u2) + al07 3  4 3f (3.47)

-°lT
-T

- -J( +,(3.48),
g+

023
"23 0752 -1 2 3  (3.49)

-T
"31 - -° - =Du1 -1x , (3.50)

-T

0 -1,2,3 at x3 =0 , (3.51)

io (+)1/2 (3.52)

where a4 = / a1  a4 + 2, a2 = a4 + 1 and a3 - (3a4 + 2) .

Having a known temperature expression as in Equation (3.31), we

may choose the solution for the displacement components 7 and "U2 in

the form
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LflX3

"62 g(x3) e(3.53)

where functions f and g are to be determined later by combining Equa-

tion (3.43) and Equation (3.42) which results in

(D2 
-

x2)

Considering Equation (3.53), it follows that

xi 3.4

x2

Equation (3.42) can be rewritten as

T - -2 -2- 2 4axx

O -ia3iT+ (a x1 + x) u1  D u1  2 a u2  (3.55)
a2x1

In view of DU 3 obtained by taking the differentiation of Equation

(3.55) with respect to X3, it follows from Equation (3.44) that

U3: ~ -a1D3 2 -2- ~~ 2 u a
u m (a s + a -1  D751 + -212D5 Da70T].(56

3 ax s2 1 1 1 21

Differentiating U3 with respect to X3 and then equating the result with

Equation (3.55), the ODE governing the displacement field becomes

- 1  ( 2-2  2 -a 2  -2) -- 22 -

-- 2- 2 - Ia D2 -s 2) T.(.7

a2X1X2D U2 -a 2s2x1x2u 2  aZD(.7
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From Equations (3.31), (3.53), and (3.54), Equation (3.57) leads to

-D 4  + 4wD 3g + 2(s2  3 32) D 2  + 4we 2Dg a e4

2a3  -1)cse 3+ (-A +iAj) sin(e )J (.8
!aj Z2 weC(8 2  '1) X3  ' 1

where A,, A2, B1, and B2 are the same as in Equation (3.30).

The complementary solution of Equation (3.58) (gH) is obtained

by solving the corresponding characteristic equation which is

-O + 4w6 3 + 2(s 2 - 3 2) m2 + 4e2 m + e4g

or

S -( 1 S (x 3  + -A) 0 (3.5)
where Ah A, 1  and 2 are ate of integr ation(.0.:

The arcounltary solution of Equation 3.58) (gp) is de tar ined

g - ~ £ 1 c+shex 3) +H i~ 3 ](.1

where ,g a cor-esond hh aa -A o tertin.

Titghe particular aouti o ndution homlgenet r solutionsCG = o~ xh + H~3 •i~ (3.61)2:-:

where G, Bn 2  ire can tsA of Iri.

wthgan Pkonthe particular sontdo hoogfeu solutions1.8 g)i dtmndb -

of ui can be readily obtained
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-c x -sx1 3u x-(h + h x) e
x2

-c -sx
U 2  (h I+ h2 X3) e

-c I -sx3
-u [as(h1 +hx 3) +(a2 + 2) hi]e
a2X2

a3xr EG cos
rU [G~w r 8 x) + Hr sln(a x3) e , r =1,2

L.

--: a3  CgX 3

3 [ag G3 cos(e x) + H3 sin(e x3) e (.2

where

G - 1(cgG 9Hli) H3  -i(WiH + 9G)

As a result, the general solutions are

up + (3.63)

The two unknown constants h, and h2 will be determined by substituting

Equation (3.63) into Equations (3.47) and (3.49) and employing the

boundary condition (3.51). Thus we have
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h ax 2  2 2h = [a so H1 + (s - a sw + a e2) G1 ,

a x

h. u 2a a(s2 - 2

h2 1 [-se H- (s 2  sw +a G1 ] . (3.64)

Following the substitution of the displacement solution, (3.62)

through (3.64), into Equations (3.45) through (3.50), the thermal

stress field can be readily obtained.

1b= 4(-blH + He + + b4G•1 e ,

-T

012 = I (-bH 1 + bG 1 e + (-b 7H 1 + b8 G1 ) "

-T r -sx
,-2 3 t- (bH - bG) e +-bH - e 3 JI  .- '

• L "7 2117(-l1 +G11 • + (bH 1  bG 1 ) e ,.:T
-T

-x = - b - bG e - (bH - bG) e , (3'65
P91 18 111 121

.:.i( 3.. 1 "'1 17 1 -blG1)• x 3  + (b9 1 -b2G ) • s x 3  ](.5 -
13- 14 1 .'5"--'1

where '

--
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-( n 12w2) T,' + (2w2 - in) F2 :H 2 ( 2  + 02 ) i C1I 1 + c37

2 2.

(n 12e + (282 + in)
G 2e (ws2 +. 82) = 1 i(C2P + 4 '2)

-a -b 1 L 2we cos(ex3) -x sin(ax3)] 

-a3
b L al- cos(ex3 1 + 2we sin(ex3)]

22 1-2

b a3 /x 1 +rs xx\
3 w \a 2 s a "2  a/,

a= -- as *rlsw-s 2) +. Cs- (i) x3  ,a~e12 1 a2 1l

-a3  -2 s'"
b = - 2we cos(ex31  x2  sin(ex3)]a 31we 3'2

-a
b Le c2 (ex) +. 2we sin(ex3)

a 2 -2
a3  x2  + rs x3

7 as aa a'2 1 2 1

a r -2 rsw S)-2
b 1 + +. (s x x8 w as 2 + a. i 23

b9  alae sln(ex 3)
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b1  a3s COS(ex)

a~2

3~X
b x

a s2
- [1 (s -dxi

a3
13- sln(ex3)

a3 L
- cos(ex)14 alwe 3

b a3  1 X3\

b16  !Iwo a2s + (s -c)x 3 j

a
-3 [_q cos(ex3 )+c sin(ex3)

-a3
b18 =aaee 3)( A s1n(ex3)1

a3
b~c + s $

19 3

b20  a1 we3
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Note that 71 and P2 are the real and imaginary part of /k.

Therefore

17,- Q(x, x2) cos (7x1 + 72x2 ) dx1 dx:

l 2 - BH Q(xi , x2) sin (- 1x1 + r 2x2 1 dx1 dx2 . (3.66)

2 8H

For the case P2 = 0, Equations (3.65) become

- r [(b1C1 + b2C2 e + (b3C1 + b4 C2)

-T
c22 .3 .3]'15(b51 + b62 e  (b7 C1  b8 C2) e-

-T
'133 = gl 9C + e " (b11C1 + b12 C2  e sx3 1

-T
~1  iiJjb 1  14 -•1L~ 1~2 l

-T r -sxl

12 -C 1(b + bC 2  e - (bC + b6C e...-U21 171 182 i1 1 2

--23 -iX2Y 1 (blC + b,8C2 ) • - (b9C, + b20C2  e s 3 ],-.

--31 -ixi 1 [(b17 C1 + b18 C2 1 e - (b19 CI + b20 C2 ) e (3.67)

3.5 Numerical Results

Previous sections have shown the general expressions for the

transformed mechanical and thermal stress fields. After applying the
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inverse Fourier transform and following through the simplification of

the multiple integrals, results for several cases can be obtained

numerically.

3.5.1 Rectangular Contact Area with Uniform Pressure (Case 1)

Mechanical Stress Field

The tractions of the mechanical loading are

03 -R3(N12 x 21 a) 3 2 =-R 2  1 31 =-Rl(x1, x2, 0)

where

Po constant, x1  a, x2  < b
R3

0 elsewhere

The corresponding transformed boundary conditions can be readily

obtained

0) fo f R3 e 'Zx-Y dx1 dx2

-3 (17 "2 a) 3~~X 2 d 1 d 2

7- P ef~l*X dZx -a e'd dx ]

0 '2x'Z-71171j

.........- e - ... .. ..



By following the substitution of (3.68) into (3.15) and applying tihe

inverse transform, the mechanical stress components can be expressed as

{oij} = {j + {(~jl

where the first term on the right-hand side of this equation denotes

the stress components resulting from the normal loading 73 and the

secu~nd the frictional loading 71. The expressions are

of n... Co 1 - 2 e 1 3 -j22 o ob[ YX-yx

Ii 07 U L 3 2

W(s, ) ds d

1 15 ( B2  2
022= Hsin cs * 0 ~ T ~ 1) 12 *O2 sin2 ~

'722 =7 Po0 H sin coFs 0 E yY3 (T 1 YX

1 3.r 2 r ssx,fl ~ ~ JY S.O'±I in e5YX - ~ , yd2 s,~ Is

n1~j j 0 w3 y eL 0 sIx

23 f es sd

"33 H sin cose -3 lY
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f "i.P 2 o 2 *( 1 2- 2~ e 13

Co 1 C + si 2M e

+ ~ H T sin 2  M223 ~,) s

ST1-Y 3 2 y3 W(so) ds do

-u fco0s.f 2  ) M2 23sWsld d
(si * O2 i

+ (Y3 2ye2 sn20 eIyx W(s ) ds d

2f Y2P _ 1) 1I [ 2 y1 X 2
0 3 2J R -i n~ s co * 7

e ~ sn e W(s, ) ds ,(.9

+ 73
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where

lJ~,~ asin(sa cos *)sin(sb sin *) sy cos(e-

(X2 2 1/2 (1.M Cos2 0)

= 1- M~c /23 ,a12

2 -11/HY 3- 1 T U 6= ta Co-. ,

xl

Equations (3.69) can be reduced to single integrals by using' the

techniques of change of variables and the following equalities:

sin(sa cos 0) sin(sb sin *) e~tx3ecos(sy cos(e -0)

a ~ te jEcos s(a cos 0 b sin * 0 cos(e -0)

+ cos s(a cos *-b sin 0 + y cos(e -

[ cos s(a cos o + b sin * - y cos(9
+ cos s(a cos *+ b sin * + y cos(e - )J

sin(sa cos ~)sln(sb sin e) e X sines cosiea - ))
-SY

1 1 eS tX3 [[sin s(a cos * - b sin 0 + y cos(a -0)
-sin s~a cos 0 - b sin *-y cos(a -

[ sin s(a cos i + b sin t + y cos(e -0)

-sin s(a cos *+ b sin *-y cos(9 - *))

J 2ed sln(sh.) ds an-'.~s d

Jf e-d cos(sh) ds ef ~ s ds I n(h d)
0 ~0d
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fe1 -sdThe tem - e ds cancels out during simplification. Thus, the

stress fields are expressed as

P
n y( + 1 M2 - 142) S1  yjy 252  do

072 fo' co siC{Y3( 82 1 1) co 2  si2

2w2

.S1 y sin o S2 d#

r -P o f 1 2SJ -*33 77 0H s in To' 31 1y2S2Jd

2Y 1 Y

n Hr si o (-

-tP

n o (f1! -YlY 2)sn 2

275
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F -f 1 -2  2  22

1 [( 3  2  sin 2  j W2 do

p yS -f. H 2 2 2 2 '
033 2 (s I m) + T3 d2 d-

IF fiR H s2 2 1 [(Y3 - 2ylT2 )

(sin2  2 cos2  W do

fo) Y1 3

f2 4f 0 1 3.2 1 (2

3f 2w2f 0Hi Cos 2 o - l2 in2 0) S I do

(3.70)

in which

L2 22
[[a cos 0 + b sin 0 + y cos(e - j- + y l-

{[a cos - b sin o -y cos(e - )]2 + y

+ t'3
+ in]2 2 2 .{[a cos o + b sin y - T cos(e - + 0tX 3) 2+ I.

InI

+ I "]2 2 2" "

. 76
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=~ -1 acos 6 -b sin + y cos(e - )
.,t3

+ 1 a cos 4 +b sin $ - ycos(e t)

- t 1 a cos 6-__b sin 4 - y cos(e - 6)

- 1tn a cos -6 +b sin 4 y cos(a - s)

Ytx

t =1,2.

The integrals appearing in Equations (3.70) are suitable for

numerical evaluation at any point inside the solid. However, most

integrals are not defined at *=0, wI2 or r. Limiting processes are

imperative so that singularities can be removed.

Temperature Field

Replacing Q(Xl 9X2) in (3.66) by expressions (3.20) and (3.17), the

heat flux input in the transformed space is

I\ - q(xj1 , x) cos(x 1 + x 2  dx1 dx2

-UfPQVZl s72~b os~x) dx2 1

-2~a b

fo 1

= irksin(Z 1a) sin(72b)
X1X2
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72~ q(x1, x 2  sin(7 1xl + 72Y2  dx 1 dx 2BH

..IfP V b

~7 J-Jbsnix + 72x) dx2 dx 1

0.

Expressions above are substituted into Equation (3.31) for the

transformed temperature field. The inverse Fourier transform, after

certain simplications, results in:

T I f o ff f 1 Cos(' 22  [D D1 Cos xe x3)

+ 2 sin(e x3)] dxi i (3.71)

where

12

D27 [W cos(71x1 ) n n~ ix)

1 Zsxl 1  + . n~ ix)
2 ~2 2ec(

Alternately, the temperature distribution can also be obtained by

Green's function method which will serve as a double check for

* numerical results. The temperature field results by substituting

Equation (3.35) into (3.33) and letting t

78



IfVP0  f -fbex ,j

ir1 k O JaJbR

S I

dx2 dx1 dT

With the introduction of the variable T = R

-2ux 2 b
l~YP3 a b 2

T 4 4 , k f[La exp{-2u[(x I x) " } dxl Ib

exp{-2u(x2 - x2)} dx du

which can be further simplified as

U f 0 e" 1 x 2 + bx 2 b. .-]
T - fVP k exp I )r erf ( - er -i4/, k " ,37

_-__x1 +ax 1 - a- y--

I rf " Y ) - erf V2 dy . (3.72)

This integral expression is more conducive to numerical computation.

Thermal Stress Field

Following the substitution of the expression P1 into Equations

(3.67) and applying the inverse Fourier transform, the thermal stress

field is thus
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T

-r- 0 0 f cos(72x2) [e (b ID I + b 2D 2)

+ ~3(b D1 + b D2) dx-l dx2

T
"22 = 4ufPOVfif f1 cs( 2 2  w3  + 6

*~os JSX3  2)7D 1 68 2  2 i

q 3 3  3

+-e (b 70 1 D b 2  dxl )

a3 e-S3( 150 (b6 4) 0x bx

e (b9 D + b 0 )d 1 d 2

-'4.



-sI-T_3 -fo " f cos(bx) De 3(b1TD7 + bs 8 1  (7uT 2k Jo Jo11 2

-• (b19 7 + o 8 )  d (3.73)

1SD [w sin('7,x1 ) + cos(iZlx1 ).
D3 W2 + "

D4 -j -1 2 [a sin(Zlx.) -9 co"s('lxl),

w + 8

D n sin(xl) + cos(-lxl)

5

D= 1 2- sin(iZx 1 ) + 8 cos(7\x1 ))6

07 =+ 1 r 7o(,xi) + ~,sin(CZ\x1)J

1 Cjr. cos(~ 1 1  e sin('Z1x1)]

Due to the complexity of the expressions, no existing automatic inte-

gration scheme for the Integrals above is efficient. Hence the

Gaussian-Laguerre quadrature formulas and Simpson's Integration scheme

are used for the numerical approximation (Appendix II).

3.5.2 Disk Contact Area with Uniform Pressure (Case 2)

Mechanical Stress Field

The pressure distributions are assumed to be of the form

81
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"33 -R3(xl, X2 0 .0) 1a 32  -R2 =0 031 -Rl(xl, X2, 0)

where

2 2 2 2

R3
0 elsewhere

The transformed boundary conditions can be obtained by using Equation

-a -C

P1
0 T..... + 'sa)2

2 11

Following tf sam prcdr 2anC 1/2 xreson r
obtained~~ (or th tescmoenso h om

Po a 2
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* , r - - -r- --

2.

fl 01'( T~~~-- 2 MP Sl -yly 2S2]dall ,- + 1 M2 - M )S 2  -.

n aPO 1 1 2 M2  2 2
a22 " {JO { B - 1) 1 Co + sin

S1 " YY 2 sin
2  S2 } do

033 S -l ylyS 2 ] d.

n P~. sin 2a
CF12 TW fo-J CyS -Yl~f 2S2] do

n apo ylY3 s1in * -
H3 -f rEW 1w I do

-aP fr 2~3 CO

-aP.-

022 f - ] 1 2 M

11~ ~1Y fnYos s2

" - ,- 2y )

aC 1  2 1
fr f2 ,OS +".n:

""+ [(3sin 2  W; do
Y2 "T.-
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f -'iiP ' 2 CO 2 -1 2  2o

'13 o 1 13T~ W1  Y3 W2Jd

S".

S -au P rysn0

fo

a12  fofM T2 SfH Scos2 * 1 ":

1 (Y3 - 2y 1Y2) 2 ' I "

" ~ (sin 2 * - c~s2 *) + Y3  W2 do .

f aUfPo , , .-:

G2 3  ~ F--lYlY 2C~ 1 SJ do

f a1f 2 2 2
*31  " [Y1Y2 C3S " ( Y " YIy2 sin 2 *1 S21 d* , (3.74)

where

St f J(sa) cos(sy cos(e -)) e ds

0

Wt f Ji(sa) sin(sy cos(e - ) et 3  ds

t 1.2

I I

The integrals for S and W can be solved analytically so that the

stress expressions have the form of single integrals which can be eval-

uated numerically.

84 '

."..:



Temperature Field

T, and F2 are given by

.Uf~~~oV 2 [a- 1/ 2  :::

a a 2-x 2

S Scos(x + 2x 2 ) "dx dx1
faJ j~ 2X2 1 /2 11 22 2 1

r - Re e dx2 dx.Sf J 2 211/2 2 1
-a [Ea - x

-ufPoV aJ1 (sa)S 1

-.s-

a [a 2  2

2 '2k sin(Zx 1 + 2x2) dx2 dx'2a [a x2]21/2 ,,_[a _x~

-a
" IJ- sIn(1ixl sln qa- x1 dxI

I-_

0.

Substitution of P\ and 72 into Equation (3.31) and again applica-

tion of the inverse transform results in

T -2:fP /] f2 cos(R 2x2 ) e

ED1 cos(s x3 ) + D2 sin(e x3 ]) dxl 2  (3.75)::
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where

aJ (sa)f 2 sS

According to Equation (3.37). the corresponding Green's function

solution for this case is

UfpoV (a .[a 2-x 12 J -V[R - (x1 - X1 )]/2 c

T(xix 28x3) '2 /2 dx2 dx1
-a -[a 2-x1 2

/

(3.76)

for which the numerical evaluation can be done by double Simpson's

schemes. Since Equation (3.76) is integrated within finite intervals,

it is advantageous to compute the numerical results through Equation

(3.76) instead of (3.75) where the integral is improper.

Thermal Stress Field

In the same fashion as in Case 1, it can be shown that

11V f2 cos(x 2 ) [e 3 (b1D1 + b2D2)

0 wk 0 2 T2

"sx3

+ e (b 3D1 + b4D2) d'x1 d 2

Tr
22 02fo -41xO"3[

ir2 fP0  f 2 cos(Z2x2) • (bsDI  b 6D 2 )

"sx3

+ e (b 701 + b8D2 )] dx1  2
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ir k

"e (b11D1 + b12D2)j d 1 d "2 ,

T
23 0 "2ufPoV , 2 f 2 sin(ix 2) e 3(b 1 3D 3 + bD"sx3

-e (b lD 3 + b1 6 ) d 1 d"2 ,

T rw
a12 ZifP0V +WX

2kfo c'2f 2  x2 ) [e (b1 7 D5 b18L2-sx 3

"sx 3

n+ b20 8) d 1 d 2 , (3.77)

3.5.3 Disk Contact Area with Paraboloidal Dstributon of Pressure
* (Case 3)

Mechanical Stress Field. The tr'action boundary conditions are

33 -R3(x1. x2, 0) , 032 = "R2 = 0 , 031 = -R1(x1, x2. 0)

where2
2Po(1-2/a2) , + b D2

R3 3 0 elsewhere
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a_ a 2-x) 1/2 22 iix+x

'Y7(1 " 72 INS o.f f 2 1 2/a2) e'7 , Y dx2 dx1
-a -[a -x1

Po fa f. 222y oe
41 .Ya J (1 /a2) esyc (O0 ydy de

4P J (sa)

of tf fo3

S"a 5 -~~- cos(sy cos(e - *)estx ds
t a

*.i. f -i sin(sy cos(e - *~eS~ ds

t *1.2

Again S~ and W. can be solved analytically and accordingly numeri-

cal results of the stress components can be readily obtained by

automatic integration schemes for single integrals.

Temperature Field

It is found that
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a Ca2 - 2 1/2
71 0 fP°V 12 -7 cos(i7x 1 + 2x2  dx2 dx1

-a -[a -x1 I..

f o 2".°

-4ufPoV J2 sa ) "-

ST-

U 0

2I

The temperature field can be obtained by replacing f2 in Equations

(3.75) by f3 which has the following form

Q2sa)
f 3  s

S

The expression of Green's function solution is

UfPoV a [a2'2]l/2 X 3 "2
T(x1 ,x2 ,x3) l J 1 1-a -[a2-x 1] 1/ 2  

-- -a'J

R dx2 dx1  (3.78)

where

2 1

.

Thermal Stress Field

The expressions have the same form as Equation (3.77) in Case 2

except f2 being replaced by f3.
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As an illustration of the numerical evaluation of the integrals,

graphical results are presented in dimensionless form. The coordinates

are normalized by the half width of the asperity and the stress

components by the average pressure Po, i.e.,

(4.n~c) (x1 8x2 9x3 )/a

and

'90.

(cc, nn CC ,agn, ,a~g 1 = (o11,a229 33 ,a12 ,a23 ,a31 )P o

The temperature rise from the cold state is * = Tk/q0 a, where q0.is the

heat flux due to the average frictional load, that is, qo I fPoV"

Figures 3.2 to 3.4 show the mechanical principal stresses (aM on the

trailing side with different depth, C, for Cases 1, 2, and 3, respec-

tively. It is noticed that stresses rise sharply in the neighborhood

of C 1, as C approaches zero for Cases 1 and 2. Such stress singu-

larities at C = ±1 are expected because of the discontinuities in the -.

loading functions. Temperature fields for different cases are shown in

Figures 3.5 to 3.7, in which the temperature decays rapidly with

respect to the depth. Consequently, thermal stresses are compressive

only in a very thin surface layer due to the thermal effect. The mag-

nitude of compressive stresses also decreases rapidly with the increase

of the depth until it becomes tensile. Figures 3.8 to 3.10 show the

corresponding thermal principal stress (aT) at depths C = 10- 1 and

1.0, where tensile stresses dominate, for each case. The combined

effects from mechanical and thermal fields for three cases are given in

Figures 3.11 to 3.13. Accordingly, the critical asperity pressure to

9
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initiate cracks can be predicted. For an asperity with a size of

0.5 nm (0.02 in.), a velocity of 15 m/s (600 ips) and a coefficient of

friction uf 0.5, the maximum principal stress for Cases 1, 2, and 3

reaches the ultimate strengh at critical pressures of 353 MPa (51,253

psi), 318 MPa (46,083 psi), 196 MPa (28,400 psi), respectively. In all

cases, heat checking by the mechanisms postulated may occur on the

trailing side at a depth of 0.025 mm (0.001 in.) from the surface.
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CHAPTER 4

A THREE-DIMENSIONAL MODEL OF PERIODIC MOVING ASPERITIES

4.1 Mathematical Model

The established three-dimensional theory of a single moving asper-

ity in Chapter 3.0 is expanded to incorporate the more realistic check-

ing failure in a friction loaded medium shown In Figure 4.1. As

demonstrated by Burton [7), the hot spot at the interface between a .

stationary and a rotating contacting surface precesses at a regular

rate. With reference to a region on the surface, the hot spot is

indeed moving over the surface at a periodic regularity. Under a sin-

gle severe asperity, the seal may initiate a cracK. With repeated mov-

ing friction loads, the crack may be initiated at a much lower friction

load and may be associated with a different fracture configuration.

The geometries of the contact area and loading profiles under consider-

ation will be" classified into Cases 1, 2, and 3, which are the same as

those cases in Chapter 3. Moving coordinates fixed to the center of

the first moving asperity and a time coordinate, (x1 . x2 . x3, t), are

used throughout the analysis. It is assumed that the repeated asperi-

ties occur with a period of T and move with the same velocity (V).

Therefore, the center distance between asperities (W' = VT/a) will

later play an important role in illustrating the cumulative effects.
I

The period T is an important parameter because of the following

arguments:

I. If the period is so large that the thermomechanical effect

resulting from the first asperity has already died out at the time the

:I



t 0 t~r-

X t * (N -1~

V

Figure 4.1. Three-dimensional model of N periodic moving asperities.
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second asperity appears, then the physical and mathematical models will

be those of the single moving asperity.

II. If the period is shortened so that the mechanical effect of

the first asperity has dissipated, then the thermal effect, which dif-

fuses at a slower rate, remains to affect the thermomechanical response

to the following asperity.

III. If the period is very short (high frequency), then both the

mechanical and the thermal responses of the first asperity could inter-

act with the following one.

The results in Chapter 3.0 are therefore applicable to the long

period excitations. Category III applies to loads traveling at wave

speed. For the problem under consideration, such speeds do appear in

realistic situations. Consequently, it is important to consider Cate-

gory UI for the present problem. It is significant to investigate

first whether a bounded steady state solution exists. If it does, the

thermal stress field after long term operation would also reach a

steady state solution which will be obtained analytically by Fourier

transform. General solutions of different cases for the mechanical,

temperature, and thermal stress fields will be given in Sections 2 to 4

and numerical results will be shown in Section 5. The variables used

throughout this chapter will be the same as those in previous chapters

unless specified otherwise.

4.2 Mechanical Stress Field

In the Category II problem, there is no interaction between

mechanical responses. The governing equations and the method of
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approach for the mechanical stresses are exactly the same as those of a

single asperity in Section 3.2. However, it should be mentioned that

the boundary conditions for the current periodic loading problem are

modified to be

M . R at x3  0

and

ui , j + 0 as (xixi)1/2  (4.1)

where

P(x 9 x,) , B.: contact regions, j

R 0 elsewhere

R = -fR 3 , R2  0

where P is the normal pressure distribution prescribed over the contact

regions, which is quite general at this stage. N is the total number

of existing moving asperities.

Following the same approach and using the same notation, the solu-

tions subject to the boundary condition (4.1) are obtained as follows.

-n x--44 :--( 2  2 -.* 2 1 e~ l 3

2uF Oil DUS n 1 + 2u x e

-n 2x3.;2
- ~..- .- m2ua2 -- + n-n e

"1•."

-4F 2 ) 2 e2 13
.22 1 2

- ~ ~ 2 2uifln~ 3
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2UF D =U(s
2  n2r) x. 2U ni en 3

-n 1

2 2n x3+ 2ui n (s njfIT + in3, 1W1) e

21jF~ 1 2jX ef3 1

2U 12 2Z172 -9e - 2ufix njn21T + - n

2jF~~~~~~~ +'2 7 x2u 2n U3fl3. {~ 2 1 s ~

-n x
- 2 -~1 2~ 2  e

23. Zi 7 1  Ue 1  + milin(s2 + n2) 'f,

2 +f2X (4.2)7

*where U*n373 + in271W1, the remaining coefficients are defined as in

Chapter 3.0.

4.3 Temperature Field

It is assumed that the temperature field has a slow dissipation

rate and remains at an appreciable magnitude during the passage of the

second moving asperity. In other words, at every traverse of an asper-

ity, the corresponding initial temperature is modified after the pas-

sage of the preceding asperity. The analysis therefore proceeds with a
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time sequence, at the period of the asperity occurrence (T1, to solve

the transient temperature field of each asperity in accordance with the

initial condition resulting from the previous response. Let T

denote the transient solution due to the ath moving asperity appearing

at the instant t = - 1) T. The governing equation for unsteady heat

condition in terms of the coordinate system (x1 - X- x2 , t) has the

form

1" "

ilT= (atTa + Va T) , t > (z- 1) T . (4.3)

The solution of Equation (4.3) must satisfy the following initial

and boundary conditions

T mU when t (-I) T (4.4)

where U. is the initial temperature resulting from the preceding

asperi ties,

P(xi,x2 ), Bj: contact regions, j = ... 0.CL

ka3T = Q = -lfV . (4.5) -3 Uf, elsewhere

At x 3 = 0,

T .0 as xC9

where a 1,2,..., N.

Equations (4.3) to (4.5) can be solved by Green's function

approach. First, consider a = 1 and denote T1 as the temperature above

the traction-free ambient. Then, setting

V VT1 =w exp- (xi - t)]

we have
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0at t 0

3'0,1 1 Q1 ep- ~.(x ~ t)J

for which thte Green's function solution can ,%e expressed as

* , ,1 $ (XI - i ' + (X2x 2 2+ x31)
G(x13x2 , t 3 - 2' exp- 4gc(t -trT

and hence,

ff Px 3 2).ep-V V
W f ( x ep[ x t UG(x1,x2 t) ,4v dx d0 1  2; ( T 1- 2 x1 "2

and

,t~. a
Ti fYJ P(x1.x). g(x1 - xx-x 2 xt- t )dx1 dx2 dt'

(4.6)

where

(x Vt2 + 2 +
g ~~t) 1 ex 2 3x-t1+2 x (4.7)

123' 4pc(soct) ep-4~

which is essentially the Green's function solution for Equations (4.3)

and (4.5).

Now, considering a 2, we have

a -T (atT2+V1
3 i2a t2 V 1 2 ) t
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T U at t T (4.8)

and

jP(xi'x) B1  and B2
ka T2  Q2 = V at x 0.

S0 * elsewhere

Note that the initial temperature can be written as U2 =TI(xl,X2 ,X3,

T), where T, is given in Equation (4.6).

The solution of Equation (4.8) can be readily determined, which is

T Tcff T(x11x2 x3 ). g(x 1  - 2 -x 2,x3 -X 3,t)

dx3 dx2 dx1 + 1lfY f P(x1,x 2) 1 o - - t

dx1 dx2 dt .(4.9)

Similarly, the recurrence formula can be obtained for subsequent tern-

perature fields. Therefore, the transient solution for the time after

(N -1) T has thle following form

TN= 0  ] f f TN_1(x11,x2,x3 ,(N -1) T)

N t
g(x1 -x 1,x2  - 2 x3 -x3 t) dx3 dx2 dx1 + UfY ,V .N1.

P(x1, 2  x g~ 1 -x, 2 -x, t -t )dx1 dx2 dt (4.10)

1'2 .(x x*x2 x, .



We observe that the first term of Equation (4.10) converges uniformly

to zero as t approaches infinity. Hence, for the steady state solu-

tion, Equation (4.10) yields

T V 1if limn[ f J Ptx 1,x) g( x - X - 'x2 t -t)

t-o j- N .2i 2 23

dx dx dtj (4.11)

Making use of the succeeding result

li t X 'X t a

t.'N-) g(x1  2 x 9t-t)d

V(X 1-X 1)/2c r V22

e//!7F) l6c yx Y2

=1 exp{- VER - x1  xi)3/2c1

in Equation (4.11), we can rewrite the steady state solution as

=U.fV N exp{- VCR- (x1 - x 1 /2cl

The expression above, while leading to the solution of the temperature

fie':,, cannot be applied readily in solving the thermal stress field.

An alternative method with double Fourier transform is then used. We

start by taking the transform of the heat equation, using the corres-

ponding initial and boundary conditions for TN, and then simplifying

the result by the relation
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TN TN e- K i) (4.13)

results in:

t >(N-1) 0 T

lcD TN -qN *e~~S+f (4.14)

where

1 N TN-I ( 1 72 x3 (N -1)

Equation (4.14) leads to the solution

ON PcJf T,_(l,*29X 3 1(N -1) T) *g1(x3 - x3 ,t) dx3

- N~l~2)ft e 9 1(x3, t ) dt (4.15)

where

3.

113



Equations (4.13), (4.15), and (4.16) lead to

-Ie(s 2+in) toi ( 3 x3)
1'=A t I o ~~lx 3 3fN-1 r e 4st dx3

7N (71.7) ~t exp{-[ec(s 2 + in)(t -tn) + x 2/4,c(t -t'))}

(4-17)

Introduce the change of variable as follows

1/2
z=(t -t)

then transform the last term of Equation (4.17) into the form

e dz . (4.18)

By letting t * ,the first term of Equation (4.17) vanishes. In

connection with the expression (4.18), it follows that the steady state

solution can be written as

-2TN (Z1 9 2) -C(s +in)z +X /4cz2
T2"f e 3dz .(4.19)

Oc(WOc) 0

Note that

x exp(- BxU -u ) dx = K (May)

where K is the modified Bessel function of the second kind of order .

Therefore, Equation (4.19) becomes
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-... --. - ..

:2 [ 1/4
_2Q _Z1 'Z2) 2 1/42N( 1/ 3• K11rx3 (s + in)1 2 .
Pc(ic) 4, (s + in)-

Further simplification can be made by using the identity

K1 (Z) = (1z)1/2 ez

By the same notations as in Section (3.2),

QN e'X
T = -w [C1 cos(e x3) + C2 sin(e x3)J (4.20)

which is the steady state temperature field due to N periodic moving

asperities and will be used to derive the corresponding thermal stress

field in the following section.

4.4 Thermal Stress Field

The governing equations and boundary conditions are the same as

given in Equations (3.38) to (3.41), their transformed expressions are

also the same as Equations (3.42) to (3.52). In view of the tempera-

ture expression (4.20) which is similar to the temperature Equation

(3.31) for a single moving asperity, the solution approach in Section

3.2 can be applied. However, a different method of Inverse Differen-

tial Operator is presented here so that we can check the solutions from

both methods.

Equations (3.42) through (3.44) form a system of three simultan-

eous linear differential equations. The dependent variables "i are

to be solved. The system can be rewritten as
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Au1 1,2,3 (4.21)

where a is the determinant of the system,

2 -a~~2  -2aj *2  i~ 2

12 12

-ia D (a -ia2 D D1
2

-a 2 x x1 x2-a2

A1  -a~ 2 x 1" 2  1 2ax 1 21 2l~2

2 2Dra71 -1DDaa ~ 2 2 1

=~ ~ -2a -20 -~~2

311
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I I I 0g

2 -2 -2D2  (a 1 x1 + x 2 ) -ia 3 Z1T -ia 271D

A -a~xx -ia3i2T -ia2Z2D

2 1-a -2x -a IT a 1D

21 312

= a3 ( 2  s2)2  ,,,

3 2

Thus the particular solui~tons ui will be determined by the appli-

cation of Cramer's rule.

-1 A1 - a 21
=L D (D 2  +2'1 "7• T

a11 3s '

-P A ~2  2 2 -1

= a- Da 1  *( -s 2 1,

a3A a1  D(D -s')" 'F. (4.22)
a1

u - D(- .,(4 22
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Rewrite Equation (4.20) and its derivative with respect to x3 as

T = e F cos(ex) + G' sin(ex)J
and

DT e [F1 cos(e x) + G1 sin(e x3) (4.23)

respectively, where

F1 C G ICC JG

In accordance with Equation (4.23), we solve Equation (4.22) as fol-

lows.

U1  ia 31  2. _-2 CO5SX 4 snXx 3

-i1 -a (DiX 2 e ) F cos(ex + G sn(e x 3)

ia 31  -w3 2 1

37 e 3 D1[F1 cos(e X3) + G sin(e x 3)]

1371 [G cos(e x 3) F' sin(@ x 3)] (4.24)

Note that use has been made of the fact that

2 .. 2 + 2
W s

In a similar fashion we obtain
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U2 = 2a[G' cos(e x)-F sin(e x3) (4.2)

a3  2 3

U3 S " " (Da 1e [F1 cos(e x3) + G1 sin( x3 )]

a3  eWX3 c(

a e [G1 cos(ex3 ) - F1 sin(ex3)] (4.26)

The complementary solution is determined by &i = 0 which is "

equivalent to

2 2 3 -C -C -C(D -s )(u 1,~u2,u3) 0

of which the solutions, with the consideration of the regularity condi-

tion, are

-C I S 3= (A1 + B x3 ) e 1 =1,2,3 (4.27)

where Ai's are unknown constants which are to be determined by boundary

conditions. B 's are expressed in terms of Ai's as shown below.

a 1

' a2  1  '
B1 = " " (x A1 + 72A2 - isA3)

2

a2  X2  m -
B2 = a . - (x Aj + x2 A2 - isA3)

2 a 2 + 2 2 3
2

a- + (7 A 2 A (4.28)

3 a2 +2 1 1 x 2 -s It3)
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According to Equations (4.24) to (4.27), the general solutions,

-1 _UP+1  have the f orm

-sx 3

(A; + B x) e + (cc cos(e x) + Dsin(e x3) e (4.29)

in whi ch

a -iax .ax

Cr3 2a7W6 G , Dr 2 : 3  F r r1,2

a3 a -a3
3 30

In view of Equations (3.47), (3.49), and (3.50) and taking account

of traction-free boundary conditions leads to a system of three simul-

taneous equations

Du1  ix~u U 0

u~2 - 2U 3 a0

-ia 4 (xU 1 + i262) + a1D~u 3 -a 3T =0 .(4.30)

Substituting expression of T (4.23) and i (4.28) into Equations

(4.29) to solve three unknowns A s, we have

3120
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1 a3i 2

A2 -2ala 2kswe 1(alw - s) C2 + a1 e C1  .

* a.

A3  Zaia 2 kwe [(alS -s W) C2 - e C1 ] . (4.31)

Following the substitution of ' (4.29) with the aid of Equa-

tions (4.23), (4.28), and (4.31) into Equations (3.45) through (3.50),

we finally obtain the thermal stress field as follows.

k T (bc 1 1 b2 c2 ) e + (b3 c1 + b4c2 ) ex ,

-T
-= -4- (bc. + b c e + (b7 c1 + bC e

3 k  (9 +  
- (bC 1822

-T
-- " [Ux 3  "sx12 N* x2 j(b13c1  b14 c2) e (b15 c+ b16 c2 ) e'"-- -9 1.0- 1 1

-T--G 23 _ " "3 sx 3
11-! 2 7(b 7 c1 + b1 8 c2 ) e - (b 9 c1 + b20 c2 ) e 31

-r -S
-3  ..N "x3 sx 3 ]

- =-- i (b c + bc) e - (b9c + bc) e , (4.32)
ii k - 71 18 2 19 1 20 2j

It can be shown that, for a single moving asperity, i.e., N =1,

Equations (4.32) check with the Equations (3.67) for the case 2 O.
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4.5 Numerical Results

As in Chapter 3.0 the mechanical, the temperature, and the thermal

solutions are all expressed in the Fourier transformed expressions.

Inverse Fourier transform will be applied accordingly. Numerical

evaluation of the integrals and corresponding graphical results for

Cases 1, 2, and 3 will be presented.

4.5.1 Rectangular Contact Area with Uniform Pressure (Case 1)

Mechanical Stress Field

In view of Equation (4.1), the transformed boundary conditions are

P 0.b '2 x2  N A (j-)+a iz 1
Re d " j-il-a e xe dx-g3 T7 2 f- - - :

a sin( 1a) sin(x2b) e e

R= "uf "R3 (4.33)

Substituting the expressions above into Equations (4.2), applying the

inverse transform, and going through the same simplification as shown

in Section (3.5.1), leads to the following expression.

n Po cot 1 2 21ll fo cot [Y3(1 + MY2-- ZM2 ) El - iYE2 d@

4w Jul

122

," ", '.1W

• '' ''- -" . . . . . " '- " " " . . . ."'' '' * -'* ' '" ii"i
" ° ' ' ' ° ' ' ' ' ' " ' ' ' ' ' ' ' ' ' ' ' ' ' "
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°22 = H'sn 2 y(l S- 1) M' Cos 2  + sin2 *]E1

- Yy 2 sin 2 , E2 } do

-n 233 - 2 4 = Hy 2 E 2  do

"n '*o "3CIP02 2,-' j=I J0  WE'a? 1 2 3d0,* ,
* 31 2wr ju1 0 H sin, 1 21 U

1 1.i " 2T2l y y2 E~s  I o )I

12 - sin2 * + T2 Y3 2 d ,-

22 -2,2 j=1 H sl " -1 M cs 2 €+ sin2 *]i1t;i:

4 - z in2} ] 1j-

n -~PO N Yl 1

f fon2 u 2  1) , ,

Y12

P-

2,-.. ... ... ... ... ... ... . ) .... ,,:..-

f2f 012 1 M2



Y 1 2  co2 1. [- 3 'l2f12 fw jo l CHcos s . L 1

1 (sn 2 *- cos 2 *)+, 3I1 2 1d.

S 23 ~JWY 1 E " E2 d,,

%1f" -fP C I [y 1 T 2 COS 2 *l. (- YIY sin2 *) E2] d. ::i27 j1 2Hsin2  .

(4.34) "' l

where.-. 2 "22

Et [ i (C co + b sin * + y cos(8 - *) - ), (j - 1) cos *] 2 + t3-L
ib sin - y cos(e - *) + X (j - 1) cos d# + 22

{[a cos*- t3

+ 23 22:

{[a cos * + b sin * - y cos(e - *) + , (j - )cs ] f tx3 } .

+ln ' 22 "
{[a os - bsin * + y cos(e - *) - ,. (j - 1) COS *]) + Ytx3 } I

UI
tan* ~ -1 a cos * - b sin + y cos(e - 4) - (j - 1) COS 4 .

"233 T.-E d

tan- a cos * + b sin - y cos(e - ) + (j - 1) cos E

.ttx 3  i

2W l a o H sin * o4 ) + j-1 o

tan- a cos + b sin + y cos(e - ~) + X (j - 1) Cos 24

tYtX3

tt 32
IcanZa cos # + b sin # y cos(e - )+ I (j -1) cos #1 + _.

""~~~~ 31 , ." T

?iIn

124
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Temperature Field. The expression of in Equation (4.20) is equiva-

lent to -UfV R3, i.e.,

-2ufPoV N ii (j-1)
= sinC a) sin b) • e .(4.35) .-,

Wx 2  
j=1

Substituting Equation (4.35) into (4.20) and taking the inverse trans-

form leads to

-4U fP°V N e 3
T = 2k -- fl cos(Z 2x2) e

k j=1

B I

[M1 cos(ex3 ) + M2 sin(ex3)] d51 di2  (4.36)

where

W OS-C z X U 0n 'Z,[Xl X
M, 21 - 1-I = " 2--- " 2 cosx 1 x- k (j - 1)] - -sin 1 x- x (i - 1)]) -

1 +

M2 a --2 +28 cos xl[X1 - ) (j -i)] + sin il[x -i (i -

By analogy with Equation (3.72), the temperature field from

Green's function approach is

T -- j= ?--

1fVP~ N f e( . r + b fx 2  b
: 412~k j" 0 1e v /

r o -1 ) x x -a - (j - 1Terf -- - erf d2 -

"'- 125
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Thermal Stress Field. After substituting the expression IN into

Equation (4.32) and applying the inverse transform, we find

T 4 V N f-of 4 e,
all f cosfzX2) (bM, b22)

+ • (b3 j + b4Mz)1 d"i de2  (

22 f J cos('2x2) e 5 1 + b6M2)

k i-i 0

(bTM1 + bM 2 1 d ,-

°a . k 1zf f f1 CosCh 22  1" 3(b + '1 M

- e 3(b11M1 + b12M2 ) 1 dx1  2

TN-

Coxo

"22 22p fbPo MN m
f1 - 1 cfIs(x 2 )  is (-b -+ b ,M4)

U ik j1 
.o 

Jo

i:." ~ ~~-sx3 ''I:i.:

+- e (b1 M M + b. 6 M4) dx. d"-

.- , ~126 .- :

.- . . ... . ... . .. .. .. . . .. ...... . ... ... .. . .. ... . ....... . . .. .. '. . . ... .' .. '; - '.

a33 fa o 
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T~ -4 fP V N~. U. [X~i

S - =1 f2f1 sin(x 2x2) je (b17M5s + b18M6 )

-sx3  ,,. ..- (b19M5 + b20M6 ) d"1 d, d..

T E 0 '2 1 f1 cs(72x2) + b18"8)

U ~kj=1

3 - --e (b1gM7 + b20Ma) dx1 dx2 , (4.38)

where

-, , .)) .I.

13 2 2 T- aaSnX 1 X Cos XL~X1  A Ui -
1'r

W +8

M 46 = e2 fe sinxl - (j - 1)] Cos ExA (j - 1)]}

= Z sin iix1Y 1 -A( 1)) + Wa Cos -; A U (j1)J}

12~ sin * [x l +-cs.. A- .

1I f
M = - --i - {e cos -z[x - A (j - 1)] + s x1Cx1  - A (j - )]}

1 f n - -

= f 2 cos - A (j -1)] + sin -x (j - 1)]}
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4.5.2 Disk Contact Area with Uniform Pressure (Case 2)

Mechanical Stress Field. In this case the transformed boundary

conditions are

2
P a N [ai ) -Ex1 1~ 2 2

0 f " e(Zlx-;xxl)dx] dx1
-a 1 -fa -Ex 1-1, 0-1)]1

aP 0  N f1  i -i)
J -~-J(sa) F, e

j= I

R 1 fR3 .(4.39)

With the expressions (4.39) in (4.2) and by taking inverse transform,

the solution for the mechanical stress field becomes

aP N 122

n a 0 N Cos 1 (1 02-1 2 co2 *

01 sin H K- 3 (1~ si+ T E 2 d. Y1'

aP N C 2
33 ~ ~ I YE.

ITJ=1 fJo

-aP N wsn-

"33 ju foI f3E yl~f2E 2  d.
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-aP N, fir Yly 2sln*
cr23 = n (11 12)d ,

n -aPo N fYiY3 COS os

a3l = 7 H (Il- 1 a d,2

f -au f P0 N fr Cos . 2 4*t 2 M42)
=11 - 0 H C2 2 I

"(Y3 1 YY2) 2 '
2 sin2  ] + y 2 Y3 12 }d,

f -au 1fP0 N f C 2 1) M2 Co2 k+ sin 2

"22 -wr~ fi0 F'Y21

+ (-Y3 2y, Y2) .j2 1 ' do-

-a f 1 P 0 N fwY 2 cos 0 02 1) M2co 2
-"33 0 s-jul

f a P sin cO 2 1 [(Y 3 -yy2 2

- yc]sI) + Y31 2 d.
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f f 0~P sin 2
a23= 27~~j H- yjy2 (Ej E) do

f ajfP1 2 ' 2 2

'731 = Yiio cos o E, - (03-' 1 Y i ) EJ 9(4.40) '
where

E jf J1(sa) cos{sET cos(e - * - 1) sYtx3 d

I S -SVtX
It J1(sa) sin~sE'rcos(e - *)-X'(j -1) Cos e ds

t =1,2

Temperature Field. With the expression of IqN given by-

-aufP V N i7i (j-1) :
J (sa) ~e (4.41)

the temperature solution can be readily obtained as

T f Cosf(0  N fmM -o~e

ik ~ J J 2 7oC2x2) e M1 csx 3)

+ M sin(ex3) i i (4.42)

In view of Equation (4.12), the Green's function solution is

fPV~ a [a -E
T ikju dx 1

j -1 a -a 2 _(x -X 0 -1)1 1

(4.43)
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Thermal Stress Field. The expressions are

T 2UPVNa [0 wax3
al _ k~0  2 f f2 cos~~ 2  e (b M, b b2M;)

j-1 f f s(l2x2)

-2iP =1..00 ..bM 1 6
[I irk 2 ,

+ e sb3 m I + 02 di1 di"2

T

"22 2u f P oV N -'x3

u wk .1 f2 cos( 2 2) ' e (bM1  bM 2)

-sx

+ e (b + bM 2) dx 1 d7 2

- 7X 1 8 2 1 x2'

T
2 U ~P V N ~Icx

S11 Ix x fo i~~~ e 3(b~~-b 4 4

-sx3I

- e (b15M3 + bi6M) d 1 d 2 -

T-'-

a12  2u ffPoV N as- 
-W X3 '

IA wrk f fJ J 01 2 2 sin(7 2 x2 ) 'e "(b1 M3 b14%4)

sx 3- (b M + dxl d72

is ~ 311

T _u P Va23 -2f oV N 0"m 3  ,,
w k 7 2f2 s in( 2 e (b 17M; b b18M; )  l

j =l fo02 .Z~2

-SX3 (b M b "'xld
- e (b9 5 + 20f 6 )  x 1  2  ,
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031 2 f 0V 3f *f o~~ 2  u x
Cs (b M+ b18M8 )

- ]x
e" (b19 M; + b2M8)  d 1 di2 • (4.44)

4.5.3 Disk Contact Area with Paraboloidal Distribution of Pressure
(Case 3)

Mechanical Stress Field. Similarly, we can obtain the transformted

expressions of boundary conditions in Equation (4.1). This is g.ven by

2 U)03 )
[ -Ex [12 [::: ':::::]; [xi - +

a3 j aju

e (d1x1+i-x2) dx2l .:.:

4P N iXi' (j-1)

J - s- 1: e
j-1

R1 " " 3 •(14.45)

The mechanical stresses are analogous to those outlined in Equa-
I U N

tions (4.40) except Et and I are replaced by Et and It, respec-

tively. Their forms are

.J2(sa)
Et i-J cos{sty cos(e - X) - (j - 1) cos e ds
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a ts sinjs~y cos(a )~ - x 1 cos e ds

t =1,2

Temperature Field. According to Equation (4.45), we have

-41fP21 N ix I (J-I)
e .e(4.46)

S j=1

Thus the temperature field with the aid of the above equation after the

inverse transform is

-2iUfPV. N

irk 10 0 f3 cos(i'2x2) [M1 c e 3)

+. M2 sin(ex3)] dx-1  2. (4.47

The Green's function solution is

j -a [{a 2-Ex x1 -i-f1 2 '2

exp{- V[R- (x1  x x 1 /2KIc
dx2 dx1  (4.48)

Thermal Stress Field. Replacing fz in Equation (4.44) with f3 leads to

the solution accordingly.

133



As above, the temperature and the thermal stress fields for three

cases have the form of the summation for the indexc j from 1 to N before

double integrals, which would increase computing time and cost for

large N. This inefficiency can be overcome by using the fact that.

N 1 -1,-) sin(~ Nhx1  1mr
j=1
jlsib (T'X 71)

where TH 1/2 X'(N -1) 71. Thus the expressions (4.35), (4.41),

and (4.46) for ' N can be modified. As a result, the temperature-and

the thermal stress fields can be rewritten as

Tr [ ~PVr r o( 2  N1 cos(ex) + N2 sin(ex3)

d1 6x2

and

T 2;IfPVffi WX3
IjJr ;F 0 J ~Cos(~2 2  [e- (b Nj + b N;)

(0 r wk fofo r "o(2x 2) 12

13



-sx3  a 1
- e (b1lN1 + b12N2) dI d 2 , E2

IT

--21f". '
1r12j 12 23

=r k If f r j 2 sin('2x2 ) [ex3(b 3 3  b14N4)

e"SX3 ,i 1  "d""

+ e (-b15N3  " b16N4) 4x-1 dx-2

T -2IfP0V W
1- QrJ0J n 2x sin(7 2x2) e (b17N5 + b18 N6 )

- e (b19N5 + b20N6 )] d 1 di2

r U Jo cos('x22 e 3(b1N; + b18N8)

-sx ,-

31-- e (b1gN7 + b20N8) dxI dx2 . (4.50)

where r = 1, 2, and 3 for Cases 1, 2, and 3, respectively. And

2 sin(7 1a) sin( 2b) sin(j Nx I)
• ~ x' 1 sin 1.

1 2
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For the numerical results which follow it is considered that con-

tact is in the form of a sequence of three asperities with centers

separated by a distance X 12. The values used for the moving

velocity of asperities, the dimension of contact areas, and the coeffi-

cient of friction are the same as in previous chapters, i.e., V = 15

m/s (600 ips), a - 0.25 m (0.01 in.), and uf = 0.5, respectively.

Figure 4.2 shows the mechanical principal stress fields for three cases

at the depth C = 10 1 , which is of interest here. It can be seen

that the tensile stresses occur on the trailing side and the compres-

sive stresses on the leading side of each moving asperity. In each

case the corresponding value at the corresponding location beneath each

asperity has the same order of magnitude, which justifies that the

cumulative mechanical effect is negligible as expected. In Figure 4.3•

is shown the temperature field for Case 1 in the surface layer. It is

noted that the temperature Is high near the surface, however, its

magnitude drops rapidly with respect to the depth. The temperature

gradient, which affects the thermal stress field, attains its maximum

at C 10-1. Consequently, high tensile stresses are again expected

at this depth. The temperature rise underneath the second and third -

asperities is due to the cumulative effect from the previous asperity.

For comparison, the temperature fields for three cases are presented in

Figure 4.4. It shows that Case 3 for the non-uniform heating has

higher temperature than Cases I and 2 for the uniform heating. In all

cases, the temperature rises at the corresponding location for each

asperity. As a result, large tensile stresses occur near the first
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asperity and become smaller when C is large (see Figure 4.5), The

combined effects from mechanical and thermal stress fields for three

cases are shown in Figure 4.6. Accordingly, the maximum principal
N:-

stress for Cases 1, 2, and 3 would reach the ultimate strength at cri-

tical pressures of 119 MPa (17,245 psi), 104 MPa (15,091 psi), and

88 MPa (12,700 psi), respectively.
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CHAPTER 5

DISCUSSIONS AND CONCLUSIONS

5.1 Asperity-Size, Shape of Contact Area, Load Distribution

Of interest here are the effects of different sizes, shapes of

contact areas, and load distributions of a moving asperity in addition

to what we have discussed in Section 2.5 (see Figure 2.8 and 2.9). In

three-dimensional analysis, we recall that the pressure distribution is

non-uniform for Case 3 and uniform for Cases 1 and 2; while the .shape

of the contact area is rectangular for Case 1 and circular for Cases 2

and 3. For a comparison among the three cases, Figures 5.1 and 5.3

show maximum mechanical and thermal principal stress fields, respec-

tively. Moreover, temperature fields are presented in Figure 5.2 and

maximum combined thermomechanical principal stress fields in Figure

5.4. Accordingly, we observe that the order of magnitude of the solu-

tions from Case 2 is close to (a little higher than) that from Case 1;

while the solutions from Case 3 have much higher order of magnitude

compared with Cases 1 and 2. Consequently, it can be argued that the

shape of contact area is less of a deciding factor than the pressure

distribution over the contact area. Since the inevitable irregulari-

ties in the contact surfaces will cause the load distribution to be

non-uniform when two sliding solids are nominally in contact over some

small areas, this result is of great significance to account for the

strong tendency of the crack onset in actual practice. In order to

show the asperity size effect, temperature and maximum combined thermo-

mechanical principal stress fields from three different sizes are
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sizes are investigated in Figures 5.5 and 5.6, respectively, where

i's, i = 1, 2, 3, are the half widths of the contact area, which are

0.25 mm (0.01 in.), 0.5 mm (0.02 in.), and 0.125 mm (0.005 in.),

respectively. Mention should be made that the nondimensionalization

for (x1 ,x2 ,x3 ) and T are slightly different. Here we define ( 1 ijj)

as (xl,x 2 ,x3 )/Ii and ti as Tik/qoti. The comparison should therefore

be made cautiously. Referring to Figure 5.5 where the constant average

pressure Po and heat flux qo are used, it can be shown that at the

same location higher temperature results from larger asperity size if

we compare (C1,01) with (gj/2,2€2) and (2&j,3/2) and take into account

the fact that the temperature decreases as the depth increases. In

fact, temperature is by all means expected to be higher when the total

heat input over the contact region increases. It is clear that higher

surface temperature causes higher compressive thermal stresses in the

thermal layer and as a result, the tensile stresses at i= 10-1 from

larger asperity size are higher as shown in Figure 5.6. In other

words, the thermal fracturing is more likely to happen if the total

heat input increase is achieved by the increase of the contact area

over which the average pressure is assumed to be constant. This result

checks with Figure 2.9 obtained from the two-dimensional analysis.

5.2 Comparison of Two- and Three-Dimensional Analyses

In the two-dimensional analysis, the aspect ratio, t = b/a, of the

moving asperity has a length much larger than the width measured in the

direction of motion, that is, a moving line asperity is considered.

149



I CL

r

/r--

CD CD .C

150



~0

p U
I C

I L
I I 44~ - -

S
I U,

/
I

I w

I.

U,
In
a'

I

CJ U,
I

I-

a.
/

UI( 0 I.
* 0.

ma
9-

U
.~ .~

g~dJ ma
18

u

Ca'

~0 .1-a

.9' 0 GIL
a wC.
a ma

I
9 I 0

*8*
.4-b

~L.

.9~11~
K

- I 48
0'

* 0o 0

I a' 9- o
U, II I
'U 'C,

~ '.~, a'
* I..

07

.0

0 -1 0 0 0

9- 0

0d/1~

151

............................................
*~.*. . . .

. . . . * *



For the mechanical effect portion, the dynamic stress potentials are of

the Lame type. When transformed to the coordinates fixed to the asper-

ity, the stress potentials become harmonic with distorted depth coor-

dinates. The distortion is caused by the subsonic velocity of the mov-

ing asperity. Using a unit normal and a unit tangent, the impulse

responses in the stress and the displacement fields were determined to

be of the Eringen-Suhubi type [19). The impulse responses were

employed as Green's function to compute the displacement and the stress

fields for any distribution of pressure and friction force. In the

thermal effect, following Ling's assumption [48] for high Peclet num-

ber, the heat conduction in the traverse direction is neglected,

retaining only the convective term in that direction from the local

variation. The temperature and the thermal stress fields are computed

from the thermal impulse responses, which were obtained from a unit

heat input [22).

In the three--dimensional model of a single moving asperity the

potential theory cannot be readily used, that is the three-dimensional

formulation cannot be simply extended from the two-dimensional mathema-

tical model. Double Fourier transform methods are therefore applied

for deriving the analytical solutions. Due to the complexity of the

formulations, they are first left in the transformed space. Numerical

integrations are then to be carried out for corresponding inverse

transforms.

It is clear that two-dimensional theory provides a much simpler

approach which also leads to fairly good numerical results of the

mechanical and the temperature fields. This can be seen if we compare
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Figures 2.5 and 2.6 with 3.2 and 3.5, respectively. However, even with

the analytical difficulty, the three-dimensional modeling is virtually

unavoidable as it best describes the geometrical shape of the asper-

ity. Therefore, in that model, different load distributions over a

circular or a rectangular area, instead of the unrealistic line asper-

ity, can be analyzed. In addition, taking Case 1, t = 10 from the

three-dimensional theory and the one with uniform pressure distribution

from two-dimensional theory for comparison, thermal stresses have a

different order of magnitude as shown in Figures 3.8 and 2.8. This is

deduced from the dimensional effect which is of great importance. As

we know there is no temperature variation in the n direction in two-

dimensional analysis; while in three-dimensions the temperature drops

off near the edge of the contact area in the n direction, i.e., n =

±10, illustrated by Figures 5.7 and 5.8 for Case 1, t = 10 at depths C

= 10- 6 and 10-1, respectively. Thus far, the cool regions outside

the hot spot in the -n direction also constrain the thermal layer from

expanding. As a result, tensile stresses at C = 10-1 is elevated to

a higher order of magnitude. Thus the fracture threshold predicted

from three-dimensional theory is at a much lower asperity pressure or a

lower asperity rubbing speed than that from the two-dimensional theory.

It is worth mentioning that three-dimensional theory can be applied to

justify two-dimensional theory. Numerically it is shown in Figure 5.9

where the result for Case 1 "moves toward" two-dimensional solution as

the aspect ratio increases. Theoretically the Dirac function C( 2)

will be associated with the transformed boundary functions such as 7i
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Figure 5.8. Temperature field at ;=10~ for Case 1, t =10.
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in Equation (3.15) or in Equation (3.67) if we consider a moving

line asperity instead of a moving asperity with a rectangular contact S

area. Consequently, three-dimensional formulations of double integrals

can be easily simplified to single integrals which converge to the two-

dimensional solutions.

5.3 Cumulative Effects of Periodic Loads

It is evident that the spacing between asperities and the number

of repetitions serve as governing parameters. The cumulative effects

on mechanical stresses, temperature distributions, and thermal stresses

have been demonstrated with a sequence of three asperities with center

distance X = 12 in Figures 4.2, 4.4, and 4.5, respectively. In

summary, the mechanical stress distribution duplicates individual

effect as in the problem of a single moving asperity. The temperature

field however, because of the periodic updating of the initial tempera-

ture field at individual asperities, shows a definite cumulative

effect, albeit with a reducing increment at individual passing

asperities. Since thermal stress distribution is sensitive to the

temperature variation, the magnitudes of tensile stresses in the vicin-

ity of the first moving asperity are increased. As a result, the com-

bined stress field, as shown in Figure 4.6, reaches a fracture thres-

hold at a much lower critical average pressure compared with that for a

single moving asperity. If the center distance of asperities is

increased to 1200 times the characteristic dimension of the contact

area, i.e., x = 1200, not only the mechanical stress field from
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individual excitation propagating at the sound speed is noncumulative,

but also the thermal responses from the preceding asperities have died

out. Hence in this case, the mechanical and thermal responses are

essentially repeated under energy passage of moving asperities. As for

the cumulative effects from the number of repetitions, Figures 5.10 and

5.11 show temperature fields and maximum combined thermomechanical

principal stress fields for different number of moving asperities. As

expected, the increase of the number of repetitions may result in

higher tensile stresses and thus the seal is most likely easier to

crack. Nevertheless, the damaging aspect of cumulative effects is not

to increase indefinitely. For if we recall the temperature field in

Equation (4.20)

0N " 3
S[C 1 cos(ex3) + C2 sin(ex3)J

where QN is associated with a series of the form

N G X ~(J-1):1e
j-

which has a close form as

e •sin(l NX )/sin( - x 1 )

with TN expressed as 1/2 x'(N - 1) 71. It can be shown that all

terms in T are bounded and the resultant thermal solutions after the

inverse Fourier transform are convergent on the consideration of the

Riemann-Lebesgue theorem, as the number of periodic excitation of

traversing asperities approaches infinity.
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Thus far, three models characterizing the heat checking failure

have been established. These models contribute general straight-

forward methods so that we can assess the tendencies of the crack ini-

tiation, which is of major concern. The avoidance of thermocracks by -.

controlling some parameters such as E, a, k, V, a, etc. can be opti-

mized. In general, it can be concluded that reducing the size and num-

ber of asperities, decreasing the moving velocity, and having uniform

pressure distributions, and choosing a seal material with low modulus

of elasticity, low coefficient of thermal expansion, high thermal con-

ductivity, and high fracture strength are efficient to alleviate the

thermal fracturing problem.

5.4 Justifications and Recommendations

Of concern here are the justifications of the major assumptions,

the formulations, and the numerical results. In the analysis, the

flash temperature in the neighborhood of the asperities contained on

the mating ring is so high that all the frictional heat may be assumed

to flow predominately into the primary ring since the temperature dif-

ference between the asperities and the primary ring is much higher than

that between the asperities and the mating ring. As a result, this

yields an upper limit of the solution and gives a conservative estimate

of the critical pressure which would result in heat checking.

In practice, the velocity of the moving asperities is much less

than that of the Rayleigh waves, and there is no plastic deformation

observed in tension tests at temperatures as high as 1960°R (1089 K)

for Stellite III. Consequently, the physical conditions of the low
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dilatation rate and no thermal shock phenomenon justify the application

of the theory of uncoupled quasi-static thermoelasticity. In addition,

the linear theory holds since the base material subjected to the asper-

ity friction is essentially elastic from observations of failed speci-

mens.

In order to justify the analytical and the numerical results

obtained, several strategies were used. Both the mechanical and the

thermal solutions for Case 1, with the aspect ratio t + -, from the

three-dimensional theory were checked by the solutions from the two-

dimensional theory. The general solution and the integral solution of

the mechanical stress field for Case 1 from a single moving asperity

were checked by Eason's result [21]. He fixed the coordinate system to

the semi-infinite solid and used the technique of the triple Fourier

transform to analyze the mechanical responses from a moving surface

force. As for the temperature field, using the Green's function con-

cept or the Fourier transform technique led to the same result. In the

computation of the thermal stress field of a single moving asperity,

the approach adopted a semi-inverse scheme by assuming the displacement

expression to satisfy the governing equations, the boundary and the

regularity conditions. The results were checked by the solutions from

periodic excitation with N=I using the method of the Inverse Differen-

tial Operator in conjunction with the Cramer's rule.

The numerical results were also carefully obtained and justified.

In general, the numerical evaluations were checked with both Simp and

Quanc8 codes for single integrals and with both the double iterative
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Gaussian-Laguerre quadratures and the double adaptive Simpson schemes

for double integrals (see Appendix II).

The proposed models have been successfully applied to study the

brittle failure in the submarine face seals. The material properties

are considered to be constant with respect to the temperature in the

analysis. This holds since the temperature above the stress-free

ambient temperature at the depth of the order of one-twentieth asperity

size where the cracking occurs is much lower than that in the thermal

layer. However, it may be of practical interest to investigate the

multilayer effect. In this case, the material properties may be

constant in each layer but varied in different layers. Mention should

also be made that the analyses so far are restricted to the homogeneous

material. Since it is very hard to perfect the material beneath the

surface, it is worthwhile to study the layered media with the hetergen-

eity induced by the rigid inclusion or the cavity among layers. The

principal stress field from combined thermomechanical effects strongly

depends on the pressure distributions over the contact areas; while the

pressure distributions are much affected by the contact force and the

geometries of the asperities. FRr the mechanical face seal, the total

force remains constant during the operation. Therefore, the experimen-

tal research to optimize the control of the size of the moving asperi-

ties is extremely important.
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APPENDIX I

METHODS OF INTEGRAL TRANSrORMS AND GREEN'S FUNCTIONS

If we have a function f. n the n-dimensional Fourier

transform is defined by

7(7).)f~ f(x) .exp~i(7 ) dx

and the appropriate inversion form is

f(x) T ( r7nf ) exp[-l(3F x ~)] 6

where

Q7 4 )uix 1 + X2C + T

denotes the inner product of the vectors x, and 7 of Rn

In applications to physical problems the following two formulas

are often employed with the transform.

Do f(x) =(-i)li -P iT(Dxx

X~z f(x) =(-f)[al DG (x)

x

where the notations are explained as follows. For nonnegative integers

mj(j 199..n

(a ( c12 9 cn)

is called a multi-index of n variables, and



a l + 02 + +. n

is called its length.

nn
When x = (x1,x2,...,x

n) is a point in 3n, let xa be the monomial

of degree lal, which is

al a2 n
x =x x "°°x1 2 n

and Da be the differential operator of order Ija with respect to x,
x

which is

Da = "'" " n

For example, if m is a natural number, and a. are constants with

indices a, then

: a Da  
-:.<m a-

expresses a partial differential operator of order m with constant

coe ffi ci ents.

Detailed theories and applications of Fourier integral transform

have been well established by Snedden [49] and many other authors. The

aforementioned formulation serve as the basic tool and are sufficient

for the analysis.

The Green's function used to solve the partial differential equa-

tions of mathematical physics can be found in several references [50-

53). Of concern here is the use of Green's function in the solution of

the general heat conduction equation. For generality the problem is

formulated as
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v2T~~t) g ot)= I T(r ,t)

a +t in R, t > 0,

k n + h T - f (r,t) on Si , t > 0

T(r, t) * F(r) for t = 0, in R

where 3/an i denotes differentiation along the outward-drawn normal to

the boundary surface Si, i = 1,2,.:.,m and m is the number of contin-

uous boundary surfaces of the region R. g(r,t), the internal heat

generation, and fi(r,t), the boundary-condition functon on Si, vary

with position and time. F(r) is the initial condition function.

The corresponding Green's function is the solution of the follow-

ing auxiliary problem for the same region R:

VG + a (r ') 8t- T) - in R, t>aG

kI T + h G - 0 on Si g t > T

G =0 if t <

where

(r -r ) = s(x 1 - x1 ) 8(x 2 - x2 ) S(x3 - x3 )

for (x1,x2,x3) coordinates.

It is noted that this auxiliary problem satisfied by the Green's

function has homogeneous boundary conditions and has an impulsive point

heat source and zero initial condition. In other words, this solution
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represents the temperature distribution in the region R, which is

initially at zero temperature and subjected to homogeneous boundary

conditions, due to an impulsive heat source of strength unity located

at r and releasing its heat spontaneously at time T.

The temperature distribution in terms of the Green's function

according to Ozisik [54], is

t
T(r,t) = G= 0 F(r) dv +.J dr Gg(r ,T) dv

r 0  R

t m

1T= dIsf 7 f (r,t) dSi :

where GISi refers to the Green's function evaluated at the boundary

surface.

Most often the heat conduction equation is not in the form pre-

sented. Under this circumstance, a different Green's function needs to

be determined or some transformation may be useful to reduce the equa-

tion to the standard form for which Green's function is known. For

example, if we have

3T c72T 2 - + yT + g
T" 3x--1" 02 33T- 2 3 3-- _3.

where K, B 1, 02, 03 and y are constants. We define a new dependent "1*9

variable w as
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T(rt) = (r, t) expt) x1  ]- 1

[82 B2 03 B3
.exp x 2 - t exp x3 t-

Under this transformation we have the standard form:

2 1 1awdr,t)7 (rt) + { G(r,t) = ; r .

T at

where

2 2

G pc exp 81 x + 1- ti expi- x 2 2+ t

* exp x- 3 + ti
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APPENDIX II

NUMERICAL INTEGRATION

The numerical methods for evaluating the integral of the form

1(f) fb f(x) dx
a

with [a,b] finite, are well established and can be found in most text-

books of numerical analysis [55-59). In general, the integration meth-

ods can be viewed within a simple framework. First, try to find a

family of functions, {fn(x),n > 1}, of which each approximates the

integrand f(x) in the following sense

if -fn. 0 as n..

The form of each fn should be chosen such that we can easily evaluate

the integral

b
I (f) f( dx

which approximates I(f), that is 1(f) - In(f). As for the error, we

have

." b

En(f) = I(f) - In(f) =f Ef(x) - fn (x) dx
a

and

b
IEn(f) I jf(x) - fn(x) dx < (b - a) if - fnim a



The typical best-known example is the Newton-Cotes integration
formulas which are obtained by a suitable interpolation polynomial

fn(x) on the nodes xo,xl,...,x n to replace the integrand f(x).

Consider an equally-spaced partition of the closed interval [a,b]

gi ven by

x= a + i b- a

Let fn be expressed in connection with the Lagrange polynomial as

n x
f(x) = f(x1) LW(x) L1(x) = '7 .n =0 i= x i  X jm'" "

ajOi j
j* i

If we define

n
In M = f(x 1 ) =i

i=O

and introduce the new variable t such that x = a + t(b - a), then

can be expressed as

= (b - a) f - dtfoj=O 0 ."

j*i

which depends on n only. For sufficiently smooth f(x), it can be shown

[60) that the approximation error has the form

Pn+1 f(Pn ) "' '

E n(f) =K n(-a (a,b)

where Pn and Kn depend only on n but not on the integrand f.

In particular, for n = 2, the Newton-Cotes formula becomes the

Simpson rule which is
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flx) dx - [f(a) + 4f( ) + f(b)] - (b -a) (4J 2880 )
a

The corresponding composite rule is obtained as follows

fb N-1 i + N-i
a f(x) dx = f(x) dx - h f f(xI + hit) dt

f f i=0

1=0 f + f + + f(x1+1 ) "2880

where h xt+ 1 - xt . For the case of equally-spaced intervals, i.e.,

hi  - h

the above formula becomes

f(x)a) + 4 f(a + (k +Z) h) + 2 (a + kh) + f(b)

a kO k=i

5.(b -a) 5 f(4) ()nCab

N4  f (i)• ab
2880 N

Another powerful integration method is the Gaussian quadrature

behind which the idea is to find an integration formula

Inlf) A f(x.) mlw(x) flx) dx

n j=1 Ja.

where w(x) is a given non-negative weight function on the interval

(ab), which may be infinite; and assumes the following properties:
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b

i. f x 1xI (x) dx is integrable and finite for all n > 0.

a

b
2. Iff w(x) g(x) dx = 0 for some continuous non-negative

a

function g(x), then g(x) 0 on (ab).

Aj, xj can be determined by the method of undetermined coefficients

which asks for perfect accuracy when f(x) is one of the power functions

lx'x2,...,x 2n-1. This provides. 2n conditions for the determined 2n

unknowns Aj and xj. In fact,

A=j f (x) L (x) dx

where Lj(x) is the Lagrange polynomial. The arguments xl,...,xn are

the zeros of nth degree orthogonal polynomials *n(x) on (ab) with

respect to the weight function, i.e.,

fb

Ja ux) *n(x) *3(x) dx -0 for n *m

The error expression can be shown to have the form [611

AYn (2n)En(f) AZ2n~ f .()

n

Gaussian-Laguerre quadrature is one particular type of Gaussian quadra-

ture with w(x) e-x. It takes the form

_"e X n (n,)2  f(2n) i'':

f(x) dx i= Aif(x1 ) f(n)!f (n)
i=
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the arguments xi being the zeros of the nth Laguerre polynomial

n S(eXx n )

dxn

and the coefficients Ai being

(n!) 2
Ai Sxt [Pni11

The numbers xi and Ai are available in Tables [621.

It is known that an iterative scheme or an adaptive scheme should

be employed in conjunction with the composite rule of integration. In

an iterative scheme, successive approximations to the integral are

computed until it has met the required accuracy. For instance, the

algorithm can be set as follows.

Let I2kN(f) denote the approximation solution based on the compo-

site rule with 2kH equal-width subintervals. For k * 0,1,2,..., if

II k+1N ( f )  I 1kN(f) I

is sufficiently small, then we exit with I2k+1N(f) as the result.

The iterative scheme can be quite inefficient, since the accuracy

may be satisfactory on many subintervals where the refinement becomes

unnecessary. Based on this idea, an adaptive scheme, which refines

only where necessary, has been well established [63-691. The integra-

tion codes Simp and Quanc8 associated with the Simpson rule and 8 panel

Newton-Cotes formula, respectively, are examples of such a scheme.

173



Singular integrals, whether for singular integrands or for

infinite range of integration, are encountered in previous chapters.

Since strategies to handle such singularities are too varied and

numerous, only some of them which have been applied successfully are

delineated in the following.

1. Apparent (or removable) singularities may exist at some values

of the integration variable. Limiting values should be found with the

help of L'Hosptal's rule if necessary.

2. A change of variable may exchange a difficult singularity for

a less critical one, or it may remove the singularity completely. For

instance, if f(x) C C[O,1], the change of variable tn = x transforms

the integral

1 1
f x n f(x) dx, n > 2,

into

n'f f(tn) tn- 2 dt

which is a proper integral. Note that a change of variable is one of

the most effective methods to evaluate an integral with an infinite

limit since it can transform the infinite r' ion Into a finite region.

For example, If y e- x , then

f f(-ln v1 dyfix) dx ""

f17y
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3. Reduce the infinite integral fj f(x) dx to a finite integral

k f(x) dx and estimate the truncation error due to f(x) dx if ,0

possible.

4. It has been suggested by Squire [70] that the infinite ite-

gral can be transformed to .

f(x) dx a s Ef(st) + t f(s/t)] dt

For the double integral of the form

f f(x,y) dx dy ,f
both the inner and outer integrals can be evaluated by using Gaussian-

Laguerre quadrature based on an iterative scheme. Alternatively, the

integral above can be first transformed Into the integral with finite

Intervals by the technique of change of variable. Then the application

of any of the adaptive quadrature schemes of io dimensions can lead to

respectable results.
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